The strong unique continuation property for the Dirac operator
碩士 === 臺灣大學 === 數學研究所 === 98 === This paper is a survey of strong unique continuation property for the Dirac equation. We know that a function can be non-triviual even if it vanishes of infinite order at some point. We say a differential equation(or inequality) has strong unique continuation propert...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | en_US |
Published: |
2010
|
Online Access: | http://ndltd.ncl.edu.tw/handle/22113404783084719266 |
Summary: | 碩士 === 臺灣大學 === 數學研究所 === 98 === This paper is a survey of strong unique continuation property for the Dirac equation. We know that a function can be non-triviual even if it vanishes of infinite order at some point. We say a differential equation(or inequality) has strong unique continuation property(SUCP) if u is a solution of this differential equation (or inequality) and u vanishes of infinite order at some x_{0}, then u is identically zero.
|
---|