A discussion of the isoperimetric problem on spheres withrotational and equatorial symmetry and monotone Gausscurvature

碩士 === 臺灣大學 === 數學研究所 === 98 === In the thesis we follow the demonstration of Prof. M. Ritoré to solve the isoperimetric problem on roatationally and equatorially symmetric spheres with monotone Gauss curvature from the poles. We first classify all the curves with constant geodesic curvature on a sp...

Full description

Bibliographic Details
Main Authors: Yi-Te Hong, 洪亦德
Other Authors: Fei-Tsen Liang
Format: Others
Language:en_US
Published: 2010
Online Access:http://ndltd.ncl.edu.tw/handle/25540757290019922161
id ndltd-TW-098NTU05479014
record_format oai_dc
spelling ndltd-TW-098NTU054790142015-10-13T18:49:38Z http://ndltd.ncl.edu.tw/handle/25540757290019922161 A discussion of the isoperimetric problem on spheres withrotational and equatorial symmetry and monotone Gausscurvature 關於二維旋轉對稱球面之等周長問題的討論 Yi-Te Hong 洪亦德 碩士 臺灣大學 數學研究所 98 In the thesis we follow the demonstration of Prof. M. Ritoré to solve the isoperimetric problem on roatationally and equatorially symmetric spheres with monotone Gauss curvature from the poles. We first classify all the curves with constant geodesic curvature on a sphere with the above properties. Then we apply Sturm''s comparison theorem successively to get the final only possible curve enclosing an isoperimetric domain. On regions with constant Gauss curvature we also invoke the Bol-Fiala inequality to conclude that inside such regions a geodesic circle has the minimal length encircling a domain with a given area. Fei-Tsen Liang 梁惠禎 2010 學位論文 ; thesis 50 en_US
collection NDLTD
language en_US
format Others
sources NDLTD
description 碩士 === 臺灣大學 === 數學研究所 === 98 === In the thesis we follow the demonstration of Prof. M. Ritoré to solve the isoperimetric problem on roatationally and equatorially symmetric spheres with monotone Gauss curvature from the poles. We first classify all the curves with constant geodesic curvature on a sphere with the above properties. Then we apply Sturm''s comparison theorem successively to get the final only possible curve enclosing an isoperimetric domain. On regions with constant Gauss curvature we also invoke the Bol-Fiala inequality to conclude that inside such regions a geodesic circle has the minimal length encircling a domain with a given area.
author2 Fei-Tsen Liang
author_facet Fei-Tsen Liang
Yi-Te Hong
洪亦德
author Yi-Te Hong
洪亦德
spellingShingle Yi-Te Hong
洪亦德
A discussion of the isoperimetric problem on spheres withrotational and equatorial symmetry and monotone Gausscurvature
author_sort Yi-Te Hong
title A discussion of the isoperimetric problem on spheres withrotational and equatorial symmetry and monotone Gausscurvature
title_short A discussion of the isoperimetric problem on spheres withrotational and equatorial symmetry and monotone Gausscurvature
title_full A discussion of the isoperimetric problem on spheres withrotational and equatorial symmetry and monotone Gausscurvature
title_fullStr A discussion of the isoperimetric problem on spheres withrotational and equatorial symmetry and monotone Gausscurvature
title_full_unstemmed A discussion of the isoperimetric problem on spheres withrotational and equatorial symmetry and monotone Gausscurvature
title_sort discussion of the isoperimetric problem on spheres withrotational and equatorial symmetry and monotone gausscurvature
publishDate 2010
url http://ndltd.ncl.edu.tw/handle/25540757290019922161
work_keys_str_mv AT yitehong adiscussionoftheisoperimetricproblemonsphereswithrotationalandequatorialsymmetryandmonotonegausscurvature
AT hóngyìdé adiscussionoftheisoperimetricproblemonsphereswithrotationalandequatorialsymmetryandmonotonegausscurvature
AT yitehong guānyúèrwéixuánzhuǎnduìchēngqiúmiànzhīděngzhōuzhǎngwèntídetǎolùn
AT hóngyìdé guānyúèrwéixuánzhuǎnduìchēngqiúmiànzhīděngzhōuzhǎngwèntídetǎolùn
AT yitehong discussionoftheisoperimetricproblemonsphereswithrotationalandequatorialsymmetryandmonotonegausscurvature
AT hóngyìdé discussionoftheisoperimetricproblemonsphereswithrotationalandequatorialsymmetryandmonotonegausscurvature
_version_ 1718037664793362432