A discussion of the isoperimetric problem on spheres withrotational and equatorial symmetry and monotone Gausscurvature
碩士 === 臺灣大學 === 數學研究所 === 98 === In the thesis we follow the demonstration of Prof. M. Ritoré to solve the isoperimetric problem on roatationally and equatorially symmetric spheres with monotone Gauss curvature from the poles. We first classify all the curves with constant geodesic curvature on a sp...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | en_US |
Published: |
2010
|
Online Access: | http://ndltd.ncl.edu.tw/handle/25540757290019922161 |
id |
ndltd-TW-098NTU05479014 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-098NTU054790142015-10-13T18:49:38Z http://ndltd.ncl.edu.tw/handle/25540757290019922161 A discussion of the isoperimetric problem on spheres withrotational and equatorial symmetry and monotone Gausscurvature 關於二維旋轉對稱球面之等周長問題的討論 Yi-Te Hong 洪亦德 碩士 臺灣大學 數學研究所 98 In the thesis we follow the demonstration of Prof. M. Ritoré to solve the isoperimetric problem on roatationally and equatorially symmetric spheres with monotone Gauss curvature from the poles. We first classify all the curves with constant geodesic curvature on a sphere with the above properties. Then we apply Sturm''s comparison theorem successively to get the final only possible curve enclosing an isoperimetric domain. On regions with constant Gauss curvature we also invoke the Bol-Fiala inequality to conclude that inside such regions a geodesic circle has the minimal length encircling a domain with a given area. Fei-Tsen Liang 梁惠禎 2010 學位論文 ; thesis 50 en_US |
collection |
NDLTD |
language |
en_US |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 臺灣大學 === 數學研究所 === 98 === In the thesis we follow the demonstration of Prof. M. Ritoré to solve the isoperimetric problem on roatationally and equatorially symmetric spheres with monotone Gauss curvature from the poles. We first classify all the curves with constant geodesic curvature on a sphere with the above properties. Then we apply Sturm''s comparison theorem successively to get the final only possible curve enclosing an isoperimetric domain. On regions with constant Gauss curvature we also invoke the Bol-Fiala inequality to conclude that inside such regions a geodesic circle has the
minimal length encircling a domain with a given area.
|
author2 |
Fei-Tsen Liang |
author_facet |
Fei-Tsen Liang Yi-Te Hong 洪亦德 |
author |
Yi-Te Hong 洪亦德 |
spellingShingle |
Yi-Te Hong 洪亦德 A discussion of the isoperimetric problem on spheres withrotational and equatorial symmetry and monotone Gausscurvature |
author_sort |
Yi-Te Hong |
title |
A discussion of the isoperimetric problem on spheres withrotational and equatorial symmetry and monotone Gausscurvature |
title_short |
A discussion of the isoperimetric problem on spheres withrotational and equatorial symmetry and monotone Gausscurvature |
title_full |
A discussion of the isoperimetric problem on spheres withrotational and equatorial symmetry and monotone Gausscurvature |
title_fullStr |
A discussion of the isoperimetric problem on spheres withrotational and equatorial symmetry and monotone Gausscurvature |
title_full_unstemmed |
A discussion of the isoperimetric problem on spheres withrotational and equatorial symmetry and monotone Gausscurvature |
title_sort |
discussion of the isoperimetric problem on spheres withrotational and equatorial symmetry and monotone gausscurvature |
publishDate |
2010 |
url |
http://ndltd.ncl.edu.tw/handle/25540757290019922161 |
work_keys_str_mv |
AT yitehong adiscussionoftheisoperimetricproblemonsphereswithrotationalandequatorialsymmetryandmonotonegausscurvature AT hóngyìdé adiscussionoftheisoperimetricproblemonsphereswithrotationalandequatorialsymmetryandmonotonegausscurvature AT yitehong guānyúèrwéixuánzhuǎnduìchēngqiúmiànzhīděngzhōuzhǎngwèntídetǎolùn AT hóngyìdé guānyúèrwéixuánzhuǎnduìchēngqiúmiànzhīděngzhōuzhǎngwèntídetǎolùn AT yitehong discussionoftheisoperimetricproblemonsphereswithrotationalandequatorialsymmetryandmonotonegausscurvature AT hóngyìdé discussionoftheisoperimetricproblemonsphereswithrotationalandequatorialsymmetryandmonotonegausscurvature |
_version_ |
1718037664793362432 |