Amphiphilic Aggregation and Antibacterial Behaviors of Poly(oxyalkylene)-Polyamine-Salts

碩士 === 臺灣大學 === 高分子科學與工程學研究所 === 98 === Oligomeric amines were synthesized from the coupling reaction of poly(oxypropylene)-diamine and triamine (POP-amine) with 2,2-Bis[4-(glycidyloxy)phenyl]propane (DGEBA). Various equivalent amounts of acidification with hydrogen chloride at the acidified ratio o...

Full description

Bibliographic Details
Main Authors: Hui-Fen Lin, 林蕙芬
Other Authors: 林江珍
Format: Others
Language:en_US
Published: 2010
Online Access:http://ndltd.ncl.edu.tw/handle/12266827801667736410
Description
Summary:碩士 === 臺灣大學 === 高分子科學與工程學研究所 === 98 === Oligomeric amines were synthesized from the coupling reaction of poly(oxypropylene)-diamine and triamine (POP-amine) with 2,2-Bis[4-(glycidyloxy)phenyl]propane (DGEBA). Various equivalent amounts of acidification with hydrogen chloride at the acidified ratio of H+/amine equiv ratios rendered the oligomers with specific amphiphilic aggregations in water and antibacterial activity. The polyamine salts behave as a surfactant and exhibit the capability of surface tension until 47 mN/m at 0.01 wt %. Laser particle size analyzer and transmission electronic microscopy (TEM) results that polyamine salts at different acid ratios have the different micelle sizes, and further provide a large concentration on bacteria. The oligomers exhibited antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) at the minimum bactericidal concentration (MBC) of 1 μg/mL. Scanning electron microscope (SEM) revealed that polyamine salts confirmed morphological changes and the treated bacteria were damaged. Comparisons between poly(oxypropylene)- and poly(oxyethylene)-backbones for the oligomers had correlated the antibacterial properties that closely related to the different sizes of the micelle formation and the polyvalent ionic sites when interacting with bacteria. A comparison of the commercial product quaternary ammonium salts (QAS) ABLUMINE 1214, the polyamine salts displayed potent antibacterial activity.