非均向膨脹宇宙 Bianchi typeⅠmodel的穩定性研究
碩士 === 國立清華大學 === 天文研究所 === 98 === Cosmic no-hair conjecture states that all expanding universe models with positive cosmological constant asymptotically approach the homogenous and isotropic de Sitter solution. This conjecture has been proved under certain energy conditions and has also been su...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Language: | zh-TW |
Published: |
2010
|
Online Access: | http://ndltd.ncl.edu.tw/handle/17719582595511971258 |
id |
ndltd-TW-098NTHU5199003 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-098NTHU51990032015-11-04T04:01:50Z http://ndltd.ncl.edu.tw/handle/17719582595511971258 非均向膨脹宇宙 Bianchi typeⅠmodel的穩定性研究 StabilityanalysisforanisotropicallyexpandingBianchitypeⅠmodel 胡理策 碩士 國立清華大學 天文研究所 98 Cosmic no-hair conjecture states that all expanding universe models with positive cosmological constant asymptotically approach the homogenous and isotropic de Sitter solution. This conjecture has been proved under certain energy conditions and has also been supported by a number of expanding solutions realized for a few known models. We will study the evolution of a homogeneous Bianchi typeⅠmodel which provides a supporting evidence of the comic no-hair conjecture. This model modifies the Einstein’s equation by the inclusion of quadratic curvature terms. Anisotropic solutions will be solved along with another de Sitter solution. The anisotropic solution can be shown to be unstable by a perturbation method. The result provides a positive supporting evidence for the comic no-hair conjecture. 江瑛貴 高文芳 2010 學位論文 ; thesis 48 zh-TW |
collection |
NDLTD |
language |
zh-TW |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 國立清華大學 === 天文研究所 === 98 === Cosmic no-hair conjecture states that all expanding universe models with positive cosmological constant asymptotically approach the homogenous and isotropic de Sitter solution. This conjecture has been proved under certain energy conditions and has also been supported by a number of expanding solutions realized for a few known models.
We will study the evolution of a homogeneous Bianchi typeⅠmodel which provides a supporting evidence of the comic no-hair conjecture. This model modifies the Einstein’s equation by the inclusion of quadratic curvature terms. Anisotropic solutions will be solved along with another de Sitter solution. The anisotropic solution can be shown to be unstable by a perturbation method. The result provides a positive supporting evidence for the comic no-hair conjecture.
|
author2 |
江瑛貴 |
author_facet |
江瑛貴 胡理策 |
author |
胡理策 |
spellingShingle |
胡理策 非均向膨脹宇宙 Bianchi typeⅠmodel的穩定性研究 |
author_sort |
胡理策 |
title |
非均向膨脹宇宙 Bianchi typeⅠmodel的穩定性研究 |
title_short |
非均向膨脹宇宙 Bianchi typeⅠmodel的穩定性研究 |
title_full |
非均向膨脹宇宙 Bianchi typeⅠmodel的穩定性研究 |
title_fullStr |
非均向膨脹宇宙 Bianchi typeⅠmodel的穩定性研究 |
title_full_unstemmed |
非均向膨脹宇宙 Bianchi typeⅠmodel的穩定性研究 |
title_sort |
非均向膨脹宇宙 bianchi typeⅰmodel的穩定性研究 |
publishDate |
2010 |
url |
http://ndltd.ncl.edu.tw/handle/17719582595511971258 |
work_keys_str_mv |
AT húlǐcè fēijūnxiàngpéngzhàngyǔzhòubianchitypeimodeldewěndìngxìngyánjiū AT húlǐcè stabilityanalysisforanisotropicallyexpandingbianchitypeimodel |
_version_ |
1718124722126848000 |