Summary: | 博士 === 國立中央大學 === 資訊管理研究所 === 98 === Classification is one of the most important research domains in data mining. Among the existing classifiers, decision trees are probably the most popular and commonly-used classification models. Most of the decision tree algorithms aimed to maximize the classification accuracy and minimize the classification error. However, in many real-world applications, there are various types of cost or resource consumption involved in both the induction of decision tree and the classification of future instance. Furthermore, the problem we face may require us to complete a classification task with limited resource. Therefore, how to build an optimum decision tree with resource constraint becomes an important issue. In this study, we first propose two algorithms which are improved versions of traditional TDIDT(Top-Down Induction on Decision Trees) algorithms. Then, we adopt a brand new approach to deal with multiple resource constraints. This approach extracts association classification rules from training dataset first, and then builds a decision tree from the extracted rules. Empirical evaluations were carried out using real datasets, and the results indicated that the proposed methods can achieve satisfactory results in handling data under different resource constraints.
|