Summary: | 碩士 === 大葉大學 === 資訊工程學系碩士班 === 98 === Let Q_n = (V_b ∪ V_w, E) be the n-dimensional hypercube. Let F_a be the set of fa pairs of adjacently faulty vertices. Let s_1, t^2_1,..... t^{k_1}_1 ∈ V_b, t^1_1 ∈ V_w. In this thesis, we construct the spanning internally disjoint paths P(s_1, t^i_1) and of Q_n − F_a for f_a + k ≤ n and 1 ≤ i ≤ k.
Let s_1, t^1_2, t^2_1,...., t^{k_1}_1 ∈V_b, s_2, t^1_1, t^2_2,...., t^{k_1}_2 ∈ V_w be arbitrary fault-free vertices of Q_n. In this thesis, we construct the spanning internally disjoint paths P(s_1, t^i_1) and P(s_2, t^j_2) of Q_n − F_a for f_a + k_1 + k_2 ≤ n–1 and 1 ≤ i ≤ k_1, 1 ≤ j ≤ k_2.
|