Estimation and Test of Conditional Kendall''s Tau under Semi-Competing Risks Data and Truncation Data

碩士 === 國立中正大學 === 統計科學所 === 98 === In this thesis, we focus on estimation and test of conditional Kendall’s tau under semi-competing risks data and truncation data. We apply the Inverse Probability Censoring Weighted (IPCW) technique to construct an estimator of conditional Kendall’s tau, τc. We pro...

Full description

Bibliographic Details
Main Authors: Wei-Cheng Huang, 黃偉誠
Other Authors: Jin-Jian Hsieh
Format: Others
Language:en_US
Published: 2010
Online Access:http://ndltd.ncl.edu.tw/handle/13508870859416595393
id ndltd-TW-098CCU05337004
record_format oai_dc
spelling ndltd-TW-098CCU053370042015-10-13T18:25:31Z http://ndltd.ncl.edu.tw/handle/13508870859416595393 Estimation and Test of Conditional Kendall''s Tau under Semi-Competing Risks Data and Truncation Data 半競爭風險資料與截切資料下條件Kendall''sTau的估計與檢定 Wei-Cheng Huang 黃偉誠 碩士 國立中正大學 統計科學所 98 In this thesis, we focus on estimation and test of conditional Kendall’s tau under semi-competing risks data and truncation data. We apply the Inverse Probability Censoring Weighted (IPCW) technique to construct an estimator of conditional Kendall’s tau, τc. We provide a test statistic for H0 : τc = τ0, where τ0 ∈ (−1, 1). When X and Y are quasi-independent, it implies τc = 0. Thus, H0 : τc = 0 is a proxy for quasi-independent. Tsai (1990), and Martin and Betensky (2005) also consider the testing problem for quasi-independence. We compare three test statistics for quasi-independence in simulation studies. Furthermore, we provide the large sample properties for our proposed estimator. We also examine the performance of the proposed estimator and the suggested test statistic via simulations. Finally, we provide two real data analyses for illustration. Jin-Jian Hsieh 謝進見 2010 學位論文 ; thesis 60 en_US
collection NDLTD
language en_US
format Others
sources NDLTD
description 碩士 === 國立中正大學 === 統計科學所 === 98 === In this thesis, we focus on estimation and test of conditional Kendall’s tau under semi-competing risks data and truncation data. We apply the Inverse Probability Censoring Weighted (IPCW) technique to construct an estimator of conditional Kendall’s tau, τc. We provide a test statistic for H0 : τc = τ0, where τ0 ∈ (−1, 1). When X and Y are quasi-independent, it implies τc = 0. Thus, H0 : τc = 0 is a proxy for quasi-independent. Tsai (1990), and Martin and Betensky (2005) also consider the testing problem for quasi-independence. We compare three test statistics for quasi-independence in simulation studies. Furthermore, we provide the large sample properties for our proposed estimator. We also examine the performance of the proposed estimator and the suggested test statistic via simulations. Finally, we provide two real data analyses for illustration.
author2 Jin-Jian Hsieh
author_facet Jin-Jian Hsieh
Wei-Cheng Huang
黃偉誠
author Wei-Cheng Huang
黃偉誠
spellingShingle Wei-Cheng Huang
黃偉誠
Estimation and Test of Conditional Kendall''s Tau under Semi-Competing Risks Data and Truncation Data
author_sort Wei-Cheng Huang
title Estimation and Test of Conditional Kendall''s Tau under Semi-Competing Risks Data and Truncation Data
title_short Estimation and Test of Conditional Kendall''s Tau under Semi-Competing Risks Data and Truncation Data
title_full Estimation and Test of Conditional Kendall''s Tau under Semi-Competing Risks Data and Truncation Data
title_fullStr Estimation and Test of Conditional Kendall''s Tau under Semi-Competing Risks Data and Truncation Data
title_full_unstemmed Estimation and Test of Conditional Kendall''s Tau under Semi-Competing Risks Data and Truncation Data
title_sort estimation and test of conditional kendall''s tau under semi-competing risks data and truncation data
publishDate 2010
url http://ndltd.ncl.edu.tw/handle/13508870859416595393
work_keys_str_mv AT weichenghuang estimationandtestofconditionalkendallaposaposstauundersemicompetingrisksdataandtruncationdata
AT huángwěichéng estimationandtestofconditionalkendallaposaposstauundersemicompetingrisksdataandtruncationdata
AT weichenghuang bànjìngzhēngfēngxiǎnzīliàoyǔjiéqièzīliàoxiàtiáojiànkendallaposaposstaudegūjìyǔjiǎndìng
AT huángwěichéng bànjìngzhēngfēngxiǎnzīliàoyǔjiéqièzīliàoxiàtiáojiànkendallaposaposstaudegūjìyǔjiǎndìng
_version_ 1718031953220861952