基於紋理分析法-應用於虹膜識別之研究

博士 === 國防大學理工學院 === 國防科學研究所 === 98 === Biometric is a science of research for automatic recognition of individuals based on physiological (face, fingerprint, iris, palm-prints, DNA) and behavioral (gait, graphology, voiceprint) characteristics. Iris recognition has many advantages, including that it...

Full description

Bibliographic Details
Main Authors: Huang Min-Yu, 黃敏昱
Other Authors: 張劍平
Format: Others
Language:zh-TW
Published: 2010
Online Access:http://ndltd.ncl.edu.tw/handle/97853459416306361864
id ndltd-TW-098CCIT0584007
record_format oai_dc
spelling ndltd-TW-098CCIT05840072017-09-15T16:26:32Z http://ndltd.ncl.edu.tw/handle/97853459416306361864 基於紋理分析法-應用於虹膜識別之研究 Huang Min-Yu 黃敏昱 博士 國防大學理工學院 國防科學研究所 98 Biometric is a science of research for automatic recognition of individuals based on physiological (face, fingerprint, iris, palm-prints, DNA) and behavioral (gait, graphology, voiceprint) characteristics. Iris recognition has many advantages, including that it is stable, non-intrusive and difficult to be changed. Iris recognition has been a research hot-spot in personal identification field of biometrics. We present a whole iris recognition system, but particularly focus on the image quality assessment and propose Local Binary Pattern (LBP), Modified Empirical Mode Decomposition (MEMD) and Improved Empirical Mode Decomposition (IEMD) to extract features for iris recognition. Experiments are conducted on the public and freely available iris images from the CASIA and UBIRIS databases. To evaluate the outcomes, three different similarity measures are used in the experiment. The experimental results show that the presented schemes achieve promising performance by those three measures. Therefore three proposed methods are feasible for iris recognition and LBP, MEMD, and IEMD are suitable for iris feature extraction. 張劍平 桂平宇 2010 學位論文 ; thesis 63 zh-TW
collection NDLTD
language zh-TW
format Others
sources NDLTD
description 博士 === 國防大學理工學院 === 國防科學研究所 === 98 === Biometric is a science of research for automatic recognition of individuals based on physiological (face, fingerprint, iris, palm-prints, DNA) and behavioral (gait, graphology, voiceprint) characteristics. Iris recognition has many advantages, including that it is stable, non-intrusive and difficult to be changed. Iris recognition has been a research hot-spot in personal identification field of biometrics. We present a whole iris recognition system, but particularly focus on the image quality assessment and propose Local Binary Pattern (LBP), Modified Empirical Mode Decomposition (MEMD) and Improved Empirical Mode Decomposition (IEMD) to extract features for iris recognition. Experiments are conducted on the public and freely available iris images from the CASIA and UBIRIS databases. To evaluate the outcomes, three different similarity measures are used in the experiment. The experimental results show that the presented schemes achieve promising performance by those three measures. Therefore three proposed methods are feasible for iris recognition and LBP, MEMD, and IEMD are suitable for iris feature extraction.
author2 張劍平
author_facet 張劍平
Huang Min-Yu
黃敏昱
author Huang Min-Yu
黃敏昱
spellingShingle Huang Min-Yu
黃敏昱
基於紋理分析法-應用於虹膜識別之研究
author_sort Huang Min-Yu
title 基於紋理分析法-應用於虹膜識別之研究
title_short 基於紋理分析法-應用於虹膜識別之研究
title_full 基於紋理分析法-應用於虹膜識別之研究
title_fullStr 基於紋理分析法-應用於虹膜識別之研究
title_full_unstemmed 基於紋理分析法-應用於虹膜識別之研究
title_sort 基於紋理分析法-應用於虹膜識別之研究
publishDate 2010
url http://ndltd.ncl.edu.tw/handle/97853459416306361864
work_keys_str_mv AT huangminyu jīyúwénlǐfēnxīfǎyīngyòngyúhóngmóshíbiézhīyánjiū
AT huángmǐnyù jīyúwénlǐfēnxīfǎyīngyòngyúhóngmóshíbiézhīyánjiū
_version_ 1718534155038359552