Summary: | 碩士 === 國立臺灣師範大學 === 應用電子科技研究所 === 97 === High altitude platform stations (HAPSs) operate at an altitude of about 21 km. They are widely known as a new means to provide both broadband applications and code division multiple access (CDMA)-based international mobile telecommunications-2000 (IMT-2000) communications using millimeter wave and third generation (3G) bands, respectively. In this thesis, we firstly consider the impact of platform displacement on both the uplink and downlink capacity and the cell deployment movement under two types of antennas. The orthogonality factor is applied in the calculation of the downlink capacity. Secondly, we build up a seamless HAPS system model under real beam projection on the ground. The cell capacity is then calculated using optimization theory. Finally, multiple-HAPS systems are used to enlarge service area. Two kinds of channel models are taken into consideration: a simplified channel model and a Rice-lognormal channel model. The uplink capacity is compared and analyzed under these two kinds of channel model.
|