Configuration and Operation of Battery Power Modules
博士 === 國立中山大學 === 電機工程學系研究所 === 97 === A novel battery power system configured by the battery power modules (BPMs) is proposed. Each BPM consists of a single battery pack or a battery bank equipped with an associated DC/DC converter. The output ports of BPMs can be connected in series for the high v...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | en_US |
Published: |
2009
|
Online Access: | http://ndltd.ncl.edu.tw/handle/78q7e2 |
id |
ndltd-TW-097NSYS5442051 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-097NSYS54420512019-05-29T03:42:53Z http://ndltd.ncl.edu.tw/handle/78q7e2 Configuration and Operation of Battery Power Modules 電池電源模組之架構與運轉 Kong-Soon NG 黃廣順 博士 國立中山大學 電機工程學系研究所 97 A novel battery power system configured by the battery power modules (BPMs) is proposed. Each BPM consists of a single battery pack or a battery bank equipped with an associated DC/DC converter. The output ports of BPMs can be connected in series for the high voltage applications, or in parallel to cope with a higher power or energy. For a large scale battery power system, a number of BPMs can be arrayed with combination of series and parallel connections to meet the load requirements. These all configurations allow the BPMs be operated individually. Consequently, the discharging currents of the batteries can be independently controlled, but coordinated to provide a full amount of the load current. The performances of BPMs connected in both parallel and series at outputs are analyzed theoretically and discussed from the experimental results. Batteries operating independently do not suffer from charge imbalance, and thus can avoid being over-charged or over-discharged, so that the life cycle can be prolonged. Furthermore, sophisticated discharging profiles such as intermittent currents can be realized to equalize the charges and thus to efficiently utilize the available stored energy in batteries. During the operation period, some of the batteries may take rest or be isolated from the system for the open-circuit measurement, facilitating the estimation of the state-of-charge (SOC) and the evaluation of the state-of-health (SOH). With the benefit of independent operation, the BPMs can be discharged with a scheduled current profile, such as intermittent discharging. The investigation results show that the average current plays the most important role in current discharging. By detecting the battery voltage at the break time, an SOC estimation method based on the dynamically changed open-circuit voltage exhibits an acceptable accuracy in a shorter time with considerations of the previous charging/discharging currents and the depth-of- discharge (DOD). In addition, the coulomb counting method can be enhanced by evaluating the SOH at the exhausted and fully charged states, which can be intended on the independently operated BPMs. Through the experiments that emulate practical operations, the SOC estimation methods are verified on lead-acid batteries and lithium-ion batteries to demonstrate the effectiveness and accuracy. Chin-Sien Moo 莫清賢 2009 學位論文 ; thesis 116 en_US |
collection |
NDLTD |
language |
en_US |
format |
Others
|
sources |
NDLTD |
description |
博士 === 國立中山大學 === 電機工程學系研究所 === 97 === A novel battery power system configured by the battery power modules (BPMs) is proposed. Each BPM consists of a single battery pack or a battery bank equipped with an associated DC/DC converter. The output ports of BPMs can be connected in series for the high voltage applications, or in parallel to cope with a higher power or energy. For a large scale battery power system, a number of BPMs can be arrayed with combination of series and parallel connections to meet the load requirements. These all configurations allow the BPMs be operated individually. Consequently, the discharging currents of the batteries can be independently controlled, but coordinated to provide a full amount of the load current.
The performances of BPMs connected in both parallel and series at outputs are analyzed theoretically and discussed from the experimental results. Batteries operating independently do not suffer from charge imbalance, and thus can avoid being over-charged or over-discharged, so that the life cycle can be prolonged. Furthermore, sophisticated discharging profiles such as intermittent currents can be realized to equalize the charges and thus to efficiently utilize the available stored energy in batteries. During the operation period, some of the batteries may take rest or be isolated from the system for the open-circuit measurement, facilitating the estimation of the state-of-charge (SOC) and the evaluation of the state-of-health (SOH).
With the benefit of independent operation, the BPMs can be discharged with a scheduled current profile, such as intermittent discharging. The investigation results show that the average current plays the most important role in current discharging. By detecting the battery voltage at the break time, an SOC estimation method based on the dynamically changed open-circuit voltage exhibits an acceptable accuracy in a shorter time with considerations of the previous charging/discharging currents and the depth-of- discharge (DOD). In addition, the coulomb counting method can be enhanced by evaluating the SOH at the exhausted and fully charged states, which can be intended on the independently operated BPMs. Through the experiments that emulate practical operations, the SOC estimation methods are verified on lead-acid batteries and lithium-ion batteries to demonstrate the effectiveness and accuracy.
|
author2 |
Chin-Sien Moo |
author_facet |
Chin-Sien Moo Kong-Soon NG 黃廣順 |
author |
Kong-Soon NG 黃廣順 |
spellingShingle |
Kong-Soon NG 黃廣順 Configuration and Operation of Battery Power Modules |
author_sort |
Kong-Soon NG |
title |
Configuration and Operation of Battery Power Modules |
title_short |
Configuration and Operation of Battery Power Modules |
title_full |
Configuration and Operation of Battery Power Modules |
title_fullStr |
Configuration and Operation of Battery Power Modules |
title_full_unstemmed |
Configuration and Operation of Battery Power Modules |
title_sort |
configuration and operation of battery power modules |
publishDate |
2009 |
url |
http://ndltd.ncl.edu.tw/handle/78q7e2 |
work_keys_str_mv |
AT kongsoonng configurationandoperationofbatterypowermodules AT huángguǎngshùn configurationandoperationofbatterypowermodules AT kongsoonng diànchídiànyuánmózǔzhījiàgòuyǔyùnzhuǎn AT huángguǎngshùn diànchídiànyuánmózǔzhījiàgòuyǔyùnzhuǎn |
_version_ |
1719193071523987456 |