On the Spectrum of Trees

碩士 === 國立中央大學 === 數學研究所 === 97 === In 1984, Godsil defined the Bethe tree $B(k,n)$ and showed the spectral radius $ ho$ of $B(k,n)$ satisfies $ ho<2sqrt{k}$. In this thesis, we find the spectrum of $B(k,n)$. With this spectrum, we also show the spectral radius $ ho$ of a tree $T$ satisfies $$sqr...

Full description

Bibliographic Details
Main Authors: Li-Cheng Hsu, 許立成
Other Authors: Hua-Min Huang
Format: Others
Language:en_US
Published: 2009
Online Access:http://ndltd.ncl.edu.tw/handle/5kkt76
id ndltd-TW-097NCU05479029
record_format oai_dc
spelling ndltd-TW-097NCU054790292019-05-15T19:27:42Z http://ndltd.ncl.edu.tw/handle/5kkt76 On the Spectrum of Trees Li-Cheng Hsu 許立成 碩士 國立中央大學 數學研究所 97 In 1984, Godsil defined the Bethe tree $B(k,n)$ and showed the spectral radius $ ho$ of $B(k,n)$ satisfies $ ho<2sqrt{k}$. In this thesis, we find the spectrum of $B(k,n)$. With this spectrum, we also show the spectral radius $ ho$ of a tree $T$ satisfies $$sqrt{Delta}leq ho< min{2sqrt{Delta-1}cos{(frac{pi}{D+2})},2sqrt{Delta}cos{(frac{pi}{r+2})}},$$ where $D$,$r$,$Delta$ are the diameter, radius, and the maximum degree of $T$ respectively. The equality of lower bound holds only when $T=K_{1,Delta}$. Hua-Min Huang 黃華民 2009 學位論文 ; thesis 26 en_US
collection NDLTD
language en_US
format Others
sources NDLTD
description 碩士 === 國立中央大學 === 數學研究所 === 97 === In 1984, Godsil defined the Bethe tree $B(k,n)$ and showed the spectral radius $ ho$ of $B(k,n)$ satisfies $ ho<2sqrt{k}$. In this thesis, we find the spectrum of $B(k,n)$. With this spectrum, we also show the spectral radius $ ho$ of a tree $T$ satisfies $$sqrt{Delta}leq ho< min{2sqrt{Delta-1}cos{(frac{pi}{D+2})},2sqrt{Delta}cos{(frac{pi}{r+2})}},$$ where $D$,$r$,$Delta$ are the diameter, radius, and the maximum degree of $T$ respectively. The equality of lower bound holds only when $T=K_{1,Delta}$.
author2 Hua-Min Huang
author_facet Hua-Min Huang
Li-Cheng Hsu
許立成
author Li-Cheng Hsu
許立成
spellingShingle Li-Cheng Hsu
許立成
On the Spectrum of Trees
author_sort Li-Cheng Hsu
title On the Spectrum of Trees
title_short On the Spectrum of Trees
title_full On the Spectrum of Trees
title_fullStr On the Spectrum of Trees
title_full_unstemmed On the Spectrum of Trees
title_sort on the spectrum of trees
publishDate 2009
url http://ndltd.ncl.edu.tw/handle/5kkt76
work_keys_str_mv AT lichenghsu onthespectrumoftrees
AT xǔlìchéng onthespectrumoftrees
_version_ 1719089119754190848