On the Spectrum of Trees

碩士 === 國立中央大學 === 數學研究所 === 97 === In 1984, Godsil defined the Bethe tree $B(k,n)$ and showed the spectral radius $ ho$ of $B(k,n)$ satisfies $ ho<2sqrt{k}$. In this thesis, we find the spectrum of $B(k,n)$. With this spectrum, we also show the spectral radius $ ho$ of a tree $T$ satisfies $$sqr...

Full description

Bibliographic Details
Main Authors: Li-Cheng Hsu, 許立成
Other Authors: Hua-Min Huang
Format: Others
Language:en_US
Published: 2009
Online Access:http://ndltd.ncl.edu.tw/handle/5kkt76
Description
Summary:碩士 === 國立中央大學 === 數學研究所 === 97 === In 1984, Godsil defined the Bethe tree $B(k,n)$ and showed the spectral radius $ ho$ of $B(k,n)$ satisfies $ ho<2sqrt{k}$. In this thesis, we find the spectrum of $B(k,n)$. With this spectrum, we also show the spectral radius $ ho$ of a tree $T$ satisfies $$sqrt{Delta}leq ho< min{2sqrt{Delta-1}cos{(frac{pi}{D+2})},2sqrt{Delta}cos{(frac{pi}{r+2})}},$$ where $D$,$r$,$Delta$ are the diameter, radius, and the maximum degree of $T$ respectively. The equality of lower bound holds only when $T=K_{1,Delta}$.