A generalization of geometric Brownian motion with applications

博士 === 國立中央大學 === 數學研究所 === 97 === Brownian motion is a rigorous mathematical model (Wiener (1923), Levy (1948), Ciesielski (1961)) with fruitful applications ranging from biology (Brown (1827)), physics (Einstein (1905), Mazo (2002)), economy and financial engineering (Bachelier (1900), Black and S...

Full description

Bibliographic Details
Main Authors: Cheng-Hsun Wu, 吳政訓
Other Authors: Yu-Sheng Hsu
Format: Others
Language:en_US
Published: 2009
Online Access:http://ndltd.ncl.edu.tw/handle/52678500671397304971
Description
Summary:博士 === 國立中央大學 === 數學研究所 === 97 === Brownian motion is a rigorous mathematical model (Wiener (1923), Levy (1948), Ciesielski (1961)) with fruitful applications ranging from biology (Brown (1827)), physics (Einstein (1905), Mazo (2002)), economy and financial engineering (Bachelier (1900), Black and Scholes (1973)), to stochastic calculus (Ito (1944)), among others. Functional of Brownian motion is also useful in stochastic modeling. This is particularly true for geometric Brownian motion. For instance, it has been applied to model prices of stock (page 365 in Karlin and Taylor (1975), Black and Scholes(1973)), rice (Yoshimoto el al. (1996)), labor (page 363 in Karlin and Taylor (1975)) and others (Shoji (1995)). See Yor (2001) for more details. Although geometric Brownian motion has a great variety of applications, it can not cover all the random phenomena. It is then desirable to find a general model with geometric Brownian motion as a special model. The purpose of this paper is to investigate the generalizations of geometric Brownian motion and its variants. For the processes mentioned above, we will first study their mathematical properties. Next, we will discuss their applications in financial engineering. In practice, the parameters are unknown and have to be inferred from realizations of processes. We will present estimation and test procedures.