Higher-Rank Numerical Ranges of 4-by-4 Matrices

碩士 === 國立中央大學 === 數學研究所 === 97 === Let $A$ be an $n$-by-$n$ matrix. For $1leq k leq n$, the rank-$k$ numerical range of $A$ is defined and denoted by $Lambda_k(A) = {lambdainmathbb{C}: PAP=lambda P mbox{ for some rank-{it k} orthogonal projection $P$}}$. In this thesis, we give a complete descriptio...

Full description

Bibliographic Details
Main Authors: Yu-Jhau Peng, 彭煜釗
Other Authors: Hwa-Long Gau
Format: Others
Language:en_US
Published: 2009
Online Access:http://ndltd.ncl.edu.tw/handle/539255
id ndltd-TW-097NCU05479010
record_format oai_dc
spelling ndltd-TW-097NCU054790102019-05-15T19:19:47Z http://ndltd.ncl.edu.tw/handle/539255 Higher-Rank Numerical Ranges of 4-by-4 Matrices 四階方陣的高秩數值域 Yu-Jhau Peng 彭煜釗 碩士 國立中央大學 數學研究所 97 Let $A$ be an $n$-by-$n$ matrix. For $1leq k leq n$, the rank-$k$ numerical range of $A$ is defined and denoted by $Lambda_k(A) = {lambdainmathbb{C}: PAP=lambda P mbox{ for some rank-{it k} orthogonal projection $P$}}$. In this thesis, we give a complete description of the higher-rank numerical ranges of $4$-by-$4$ matrices. We classify the rank-$2$ numerical ranges of $4$-by-$4$ matrices. Our classification is based on the factorability of the associated polynomial $p_A(x,y,z)equiv mathrm{det}(xmathrm{Re,}A + ymathrm{Im,}A + zI_4)$ of a $4$-by-$4$ matrix $A$. For each class, we also completely determine the shape of the rank-$2$ numerical range of a $4$-by-$4$ matrix. Hwa-Long Gau 高華隆 2009 學位論文 ; thesis 37 en_US
collection NDLTD
language en_US
format Others
sources NDLTD
description 碩士 === 國立中央大學 === 數學研究所 === 97 === Let $A$ be an $n$-by-$n$ matrix. For $1leq k leq n$, the rank-$k$ numerical range of $A$ is defined and denoted by $Lambda_k(A) = {lambdainmathbb{C}: PAP=lambda P mbox{ for some rank-{it k} orthogonal projection $P$}}$. In this thesis, we give a complete description of the higher-rank numerical ranges of $4$-by-$4$ matrices. We classify the rank-$2$ numerical ranges of $4$-by-$4$ matrices. Our classification is based on the factorability of the associated polynomial $p_A(x,y,z)equiv mathrm{det}(xmathrm{Re,}A + ymathrm{Im,}A + zI_4)$ of a $4$-by-$4$ matrix $A$. For each class, we also completely determine the shape of the rank-$2$ numerical range of a $4$-by-$4$ matrix.
author2 Hwa-Long Gau
author_facet Hwa-Long Gau
Yu-Jhau Peng
彭煜釗
author Yu-Jhau Peng
彭煜釗
spellingShingle Yu-Jhau Peng
彭煜釗
Higher-Rank Numerical Ranges of 4-by-4 Matrices
author_sort Yu-Jhau Peng
title Higher-Rank Numerical Ranges of 4-by-4 Matrices
title_short Higher-Rank Numerical Ranges of 4-by-4 Matrices
title_full Higher-Rank Numerical Ranges of 4-by-4 Matrices
title_fullStr Higher-Rank Numerical Ranges of 4-by-4 Matrices
title_full_unstemmed Higher-Rank Numerical Ranges of 4-by-4 Matrices
title_sort higher-rank numerical ranges of 4-by-4 matrices
publishDate 2009
url http://ndltd.ncl.edu.tw/handle/539255
work_keys_str_mv AT yujhaupeng higherranknumericalrangesof4by4matrices
AT péngyùzhāo higherranknumericalrangesof4by4matrices
AT yujhaupeng sìjiēfāngzhèndegāozhìshùzhíyù
AT péngyùzhāo sìjiēfāngzhèndegāozhìshùzhíyù
_version_ 1719089112006262784