Higher-Rank Numerical Ranges of 4-by-4 Matrices
碩士 === 國立中央大學 === 數學研究所 === 97 === Let $A$ be an $n$-by-$n$ matrix. For $1leq k leq n$, the rank-$k$ numerical range of $A$ is defined and denoted by $Lambda_k(A) = {lambdainmathbb{C}: PAP=lambda P mbox{ for some rank-{it k} orthogonal projection $P$}}$. In this thesis, we give a complete descriptio...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | en_US |
Published: |
2009
|
Online Access: | http://ndltd.ncl.edu.tw/handle/539255 |
id |
ndltd-TW-097NCU05479010 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-097NCU054790102019-05-15T19:19:47Z http://ndltd.ncl.edu.tw/handle/539255 Higher-Rank Numerical Ranges of 4-by-4 Matrices 四階方陣的高秩數值域 Yu-Jhau Peng 彭煜釗 碩士 國立中央大學 數學研究所 97 Let $A$ be an $n$-by-$n$ matrix. For $1leq k leq n$, the rank-$k$ numerical range of $A$ is defined and denoted by $Lambda_k(A) = {lambdainmathbb{C}: PAP=lambda P mbox{ for some rank-{it k} orthogonal projection $P$}}$. In this thesis, we give a complete description of the higher-rank numerical ranges of $4$-by-$4$ matrices. We classify the rank-$2$ numerical ranges of $4$-by-$4$ matrices. Our classification is based on the factorability of the associated polynomial $p_A(x,y,z)equiv mathrm{det}(xmathrm{Re,}A + ymathrm{Im,}A + zI_4)$ of a $4$-by-$4$ matrix $A$. For each class, we also completely determine the shape of the rank-$2$ numerical range of a $4$-by-$4$ matrix. Hwa-Long Gau 高華隆 2009 學位論文 ; thesis 37 en_US |
collection |
NDLTD |
language |
en_US |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 國立中央大學 === 數學研究所 === 97 === Let $A$ be an $n$-by-$n$ matrix. For $1leq k leq n$, the rank-$k$ numerical range of $A$ is defined and denoted by $Lambda_k(A) = {lambdainmathbb{C}: PAP=lambda P mbox{ for some rank-{it k} orthogonal projection $P$}}$. In this thesis, we give a complete description of the higher-rank numerical ranges of $4$-by-$4$ matrices. We classify the rank-$2$ numerical ranges of $4$-by-$4$ matrices. Our classification is based on the factorability of the associated polynomial $p_A(x,y,z)equiv mathrm{det}(xmathrm{Re,}A + ymathrm{Im,}A + zI_4)$ of a $4$-by-$4$ matrix $A$. For each class, we also completely determine the shape of the rank-$2$ numerical range of a $4$-by-$4$ matrix.
|
author2 |
Hwa-Long Gau |
author_facet |
Hwa-Long Gau Yu-Jhau Peng 彭煜釗 |
author |
Yu-Jhau Peng 彭煜釗 |
spellingShingle |
Yu-Jhau Peng 彭煜釗 Higher-Rank Numerical Ranges of 4-by-4 Matrices |
author_sort |
Yu-Jhau Peng |
title |
Higher-Rank Numerical Ranges of 4-by-4 Matrices |
title_short |
Higher-Rank Numerical Ranges of 4-by-4 Matrices |
title_full |
Higher-Rank Numerical Ranges of 4-by-4 Matrices |
title_fullStr |
Higher-Rank Numerical Ranges of 4-by-4 Matrices |
title_full_unstemmed |
Higher-Rank Numerical Ranges of 4-by-4 Matrices |
title_sort |
higher-rank numerical ranges of 4-by-4 matrices |
publishDate |
2009 |
url |
http://ndltd.ncl.edu.tw/handle/539255 |
work_keys_str_mv |
AT yujhaupeng higherranknumericalrangesof4by4matrices AT péngyùzhāo higherranknumericalrangesof4by4matrices AT yujhaupeng sìjiēfāngzhèndegāozhìshùzhíyù AT péngyùzhāo sìjiēfāngzhèndegāozhìshùzhíyù |
_version_ |
1719089112006262784 |