Preparation of superhydrophobic epoxy films by sol-gel process

碩士 === 國立中央大學 === 材料科學與工程研究所 === 97 === In this study, the superhydrophobic epoxy-based thin film was prepared by mixing epoxy polymer solution and MTMOS solution first, and then the silica powder and PET fibers were added into the mixing solution to increase the roughness and improve the adhesion o...

Full description

Bibliographic Details
Main Authors: Guan-yu Wu, 武冠宇
Other Authors: Hui Chen
Format: Others
Language:zh-TW
Published: 2009
Online Access:http://ndltd.ncl.edu.tw/handle/42812627091118606404
Description
Summary:碩士 === 國立中央大學 === 材料科學與工程研究所 === 97 === In this study, the superhydrophobic epoxy-based thin film was prepared by mixing epoxy polymer solution and MTMOS solution first, and then the silica powder and PET fibers were added into the mixing solution to increase the roughness and improve the adhesion of the hybrid film, respectively. The characteristic of the film was analyzed by contact angles, adhesion test, SEM images, and AFM results. The experimental result indicated that when the mole fraction of MTMOS increased from 0 to 0.4, the contact angle of the film also increased from 77° to 98°. And no matter the mole fraction of MTMOS was 0 or even 0.4, the remaining area of the films after the adhesion test were all 100%. To increase the surface roughness of the film, the coating solution was prepared by mixing the solution with silica powder. When the ratio of silica powder was 30wt%, the contact angle could be increased from 98° to 149°, but remaining area of the film decreased to 85% in the contrary. Furthermore, to improve the adhesion between the film and substrate, the coating solution was prepared by mixing the above solution with PET fibers. The remaining area after the adhesion test could be promoted to 95% as long as the addition of PET fibers was only 0.05wt%. In addition, the contact angle was also increased to 153° because of the increase of the roughness. In the other hand, the remaining area after the adhesion test could be increased to 100% while the curing temperature was increased to the range of 130˚C and 180˚C. Moreover, the corrosion test result showed that the corrosion area on the aluminum substrate was reduced obviously after coating the superhydrophobic film on it.