Rupture Directivity Analysis for Large Earthquakes

博士 === 國立中央大學 === 地球物理研究所 === 97 === Rupture Directivity Analysis for Large Earthquakes Postgraduate:Jo-Pan Chang Adviser:Dr. Chien-Ying Wang Abstract Rupture directivity analysis for large earthquakes can provide some basic fault parameters. Relationships between these fault parameters, the so-call...

Full description

Bibliographic Details
Main Authors: Jo-Pan Chang, 張若磐
Other Authors: Chien-Ying Wang
Format: Others
Language:zh-TW
Published: 2009
Online Access:http://ndltd.ncl.edu.tw/handle/552p3x
Description
Summary:博士 === 國立中央大學 === 地球物理研究所 === 97 === Rupture Directivity Analysis for Large Earthquakes Postgraduate:Jo-Pan Chang Adviser:Dr. Chien-Ying Wang Abstract Rupture directivity analysis for large earthquakes can provide some basic fault parameters. Relationships between these fault parameters, the so-called scaling law, lead to understand the physical properties of earthquakes. Many methods and seismic data can investigate the rupture directivity of an earthquake. In this study, we use the differences of surface-wave travel time between the mainshock and reference earthquake to determine the fault parameters for large earthquakes. Above mentioned, constraint on such work is that there must be reference earthquakes in the vicinity of the mainshock. Here, we propose a new method to analyze the rupture directivity of an earthquake without using reference earthquakes. That is, we calculate the surface-wave travel time using the global surface-wave phase-velocity maps to be the travel times from reference earthquakes. The concept is similar to the Green’s function. In this study, 8 large earthquakes occurring from 1999 to 2008 with Mw 7.6-9.0(9.3) are analyzed using surface waves with epicentral distances between 30° and 90°. We use the Rayleigh waves to perform the rupture directivity analysis for trust-type earthquakes; on the contrary, using the Love waves to analyze the rupture directivity for strike-slip-type earthquakes. Results show that the proposed method is valid for the rupture directivity analysis of a large earthquake. On the whole, the source duration and rupture length increase with seismic moment (or Mw). Among these analyzed earthquakes, the 2004 Sumatra-Andaman earthquake (Mw 9.0-9.3) has the longest source duration and rupture length. Besides, earthquakes with strike-slip-type mechanism have relatively larger source duration and rupture length than those with thrust-type mechanism. The optimal rupture azimuth can efficiently provide the judgment on which is the fault plane from the beach ball for the strike-slip earthquakes. However, it is ambiguous to judge the fault plane for the trust-type earthquakes. The rupture velocity is easily underestimated from the whole source duration (including the rupture time and rise time). By investigating the period of spectral node, we can determine the rise time, and then derive the reasonable rupture velocity. The advantage of our proposed method is that it is not in want of the reference earthquakes and can quickly and efficiently determine the fault parameters of large earthquakes from rupture directivity analysis. Also, the proposed method is appropriate to re-examine some historical earthquakes, such as the 1960 Chile earthquake and 1964 Alaska earthquake.