A Meshless Local Least Square Method with Symmetric System Matrix for Dynamic Problems

碩士 === 國立成功大學 === 土木工程學系碩博士班 === 97 === In this paper we introduce the meshless method of local least-square with symmetric system matrix to solve the elastic-dynamical problems. The numerical model is established on discretization points. We use the local least-square method(LLS) to establish a sys...

Full description

Bibliographic Details
Main Authors: Zheng-quan Tang, 唐正銓
Other Authors: Yung-Ming Wang
Format: Others
Language:zh-TW
Published: 2009
Online Access:http://ndltd.ncl.edu.tw/handle/66286148142200325000
id ndltd-TW-097NCKU5015105
record_format oai_dc
spelling ndltd-TW-097NCKU50151052016-05-04T04:26:28Z http://ndltd.ncl.edu.tw/handle/66286148142200325000 A Meshless Local Least Square Method with Symmetric System Matrix for Dynamic Problems 具對稱系統矩陣之局部最小二乘無網格法在振動分析之應用 Zheng-quan Tang 唐正銓 碩士 國立成功大學 土木工程學系碩博士班 97 In this paper we introduce the meshless method of local least-square with symmetric system matrix to solve the elastic-dynamical problems. The numerical model is established on discretization points. We use the local least-square method(LLS) to establish a system of equations and improve it to be symmetrical,then combine the local system of equations to a global system of equation. Finally,we use the Newmark- method and the Wilson- method to analyze the 1-D elastic-dynamical problems. In the numerical example we comparing the data analyzed in this article with the exact solution, also compared the result with results of differential reproducing kernel approximation method (DRKM). It shows that SLLS can be used on the 1-D elastic-dynamical analysis. Yung-Ming Wang 王永明 2009 學位論文 ; thesis 105 zh-TW
collection NDLTD
language zh-TW
format Others
sources NDLTD
description 碩士 === 國立成功大學 === 土木工程學系碩博士班 === 97 === In this paper we introduce the meshless method of local least-square with symmetric system matrix to solve the elastic-dynamical problems. The numerical model is established on discretization points. We use the local least-square method(LLS) to establish a system of equations and improve it to be symmetrical,then combine the local system of equations to a global system of equation. Finally,we use the Newmark- method and the Wilson- method to analyze the 1-D elastic-dynamical problems. In the numerical example we comparing the data analyzed in this article with the exact solution, also compared the result with results of differential reproducing kernel approximation method (DRKM). It shows that SLLS can be used on the 1-D elastic-dynamical analysis.
author2 Yung-Ming Wang
author_facet Yung-Ming Wang
Zheng-quan Tang
唐正銓
author Zheng-quan Tang
唐正銓
spellingShingle Zheng-quan Tang
唐正銓
A Meshless Local Least Square Method with Symmetric System Matrix for Dynamic Problems
author_sort Zheng-quan Tang
title A Meshless Local Least Square Method with Symmetric System Matrix for Dynamic Problems
title_short A Meshless Local Least Square Method with Symmetric System Matrix for Dynamic Problems
title_full A Meshless Local Least Square Method with Symmetric System Matrix for Dynamic Problems
title_fullStr A Meshless Local Least Square Method with Symmetric System Matrix for Dynamic Problems
title_full_unstemmed A Meshless Local Least Square Method with Symmetric System Matrix for Dynamic Problems
title_sort meshless local least square method with symmetric system matrix for dynamic problems
publishDate 2009
url http://ndltd.ncl.edu.tw/handle/66286148142200325000
work_keys_str_mv AT zhengquantang ameshlesslocalleastsquaremethodwithsymmetricsystemmatrixfordynamicproblems
AT tángzhèngquán ameshlesslocalleastsquaremethodwithsymmetricsystemmatrixfordynamicproblems
AT zhengquantang jùduìchēngxìtǒngjǔzhènzhījúbùzuìxiǎoèrchéngwúwǎnggéfǎzàizhèndòngfēnxīzhīyīngyòng
AT tángzhèngquán jùduìchēngxìtǒngjǔzhènzhījúbùzuìxiǎoèrchéngwúwǎnggéfǎzàizhèndòngfēnxīzhīyīngyòng
AT zhengquantang meshlesslocalleastsquaremethodwithsymmetricsystemmatrixfordynamicproblems
AT tángzhèngquán meshlesslocalleastsquaremethodwithsymmetricsystemmatrixfordynamicproblems
_version_ 1718258485427175424