A Meshless Local Least Square Method with Symmetric System Matrix for Dynamic Problems
碩士 === 國立成功大學 === 土木工程學系碩博士班 === 97 === In this paper we introduce the meshless method of local least-square with symmetric system matrix to solve the elastic-dynamical problems. The numerical model is established on discretization points. We use the local least-square method(LLS) to establish a sys...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | zh-TW |
Published: |
2009
|
Online Access: | http://ndltd.ncl.edu.tw/handle/66286148142200325000 |
id |
ndltd-TW-097NCKU5015105 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-097NCKU50151052016-05-04T04:26:28Z http://ndltd.ncl.edu.tw/handle/66286148142200325000 A Meshless Local Least Square Method with Symmetric System Matrix for Dynamic Problems 具對稱系統矩陣之局部最小二乘無網格法在振動分析之應用 Zheng-quan Tang 唐正銓 碩士 國立成功大學 土木工程學系碩博士班 97 In this paper we introduce the meshless method of local least-square with symmetric system matrix to solve the elastic-dynamical problems. The numerical model is established on discretization points. We use the local least-square method(LLS) to establish a system of equations and improve it to be symmetrical,then combine the local system of equations to a global system of equation. Finally,we use the Newmark- method and the Wilson- method to analyze the 1-D elastic-dynamical problems. In the numerical example we comparing the data analyzed in this article with the exact solution, also compared the result with results of differential reproducing kernel approximation method (DRKM). It shows that SLLS can be used on the 1-D elastic-dynamical analysis. Yung-Ming Wang 王永明 2009 學位論文 ; thesis 105 zh-TW |
collection |
NDLTD |
language |
zh-TW |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 國立成功大學 === 土木工程學系碩博士班 === 97 === In this paper we introduce the meshless method of local least-square with symmetric system matrix to solve the elastic-dynamical problems. The numerical model is established on discretization points. We use the local least-square method(LLS) to establish a system of equations and improve it to be symmetrical,then combine the local system of equations to a global system of equation. Finally,we use the Newmark- method and the Wilson- method to analyze the 1-D elastic-dynamical problems.
In the numerical example we comparing the data analyzed in this article with the exact solution, also compared the result with results of differential reproducing kernel approximation method (DRKM). It shows that SLLS can be used on the 1-D elastic-dynamical analysis.
|
author2 |
Yung-Ming Wang |
author_facet |
Yung-Ming Wang Zheng-quan Tang 唐正銓 |
author |
Zheng-quan Tang 唐正銓 |
spellingShingle |
Zheng-quan Tang 唐正銓 A Meshless Local Least Square Method with Symmetric System Matrix for Dynamic Problems |
author_sort |
Zheng-quan Tang |
title |
A Meshless Local Least Square Method with Symmetric System Matrix for Dynamic Problems |
title_short |
A Meshless Local Least Square Method with Symmetric System Matrix for Dynamic Problems |
title_full |
A Meshless Local Least Square Method with Symmetric System Matrix for Dynamic Problems |
title_fullStr |
A Meshless Local Least Square Method with Symmetric System Matrix for Dynamic Problems |
title_full_unstemmed |
A Meshless Local Least Square Method with Symmetric System Matrix for Dynamic Problems |
title_sort |
meshless local least square method with symmetric system matrix for dynamic problems |
publishDate |
2009 |
url |
http://ndltd.ncl.edu.tw/handle/66286148142200325000 |
work_keys_str_mv |
AT zhengquantang ameshlesslocalleastsquaremethodwithsymmetricsystemmatrixfordynamicproblems AT tángzhèngquán ameshlesslocalleastsquaremethodwithsymmetricsystemmatrixfordynamicproblems AT zhengquantang jùduìchēngxìtǒngjǔzhènzhījúbùzuìxiǎoèrchéngwúwǎnggéfǎzàizhèndòngfēnxīzhīyīngyòng AT tángzhèngquán jùduìchēngxìtǒngjǔzhènzhījúbùzuìxiǎoèrchéngwúwǎnggéfǎzàizhèndòngfēnxīzhīyīngyòng AT zhengquantang meshlesslocalleastsquaremethodwithsymmetricsystemmatrixfordynamicproblems AT tángzhèngquán meshlesslocalleastsquaremethodwithsymmetricsystemmatrixfordynamicproblems |
_version_ |
1718258485427175424 |