A Bayesian Model Selection of Threshold AR-GARCH Models Using the Reversible Jump MCMC Approach

碩士 === 中原大學 === 應用數學研究所 === 97 === In the last two decades, the volatility of the financial derivatives has been extremely large. One of the models that can capture the leptokurtosis and the volatility clustering phenomenon commonly seen in financial data is the Generalized Autoregressive Conditiona...

Full description

Bibliographic Details
Main Authors: Shao-Wu Chang, 張少武
Other Authors: Yu-Jau Lin
Format: Others
Language:zh-TW
Published: 2009
Online Access:http://ndltd.ncl.edu.tw/handle/38273257539894184716
id ndltd-TW-097CYCU5507029
record_format oai_dc
spelling ndltd-TW-097CYCU55070292015-10-13T12:04:41Z http://ndltd.ncl.edu.tw/handle/38273257539894184716 A Bayesian Model Selection of Threshold AR-GARCH Models Using the Reversible Jump MCMC Approach 門檻自迴歸GARCH模型之最佳模型選擇 Shao-Wu Chang 張少武 碩士 中原大學 應用數學研究所 97 In the last two decades, the volatility of the financial derivatives has been extremely large. One of the models that can capture the leptokurtosis and the volatility clustering phenomenon commonly seen in financial data is the Generalized Autoregressive Conditional Heteroscedasticity (GARCH) models. For the parameter estimation of such models, Harvey and Shephard ( 1993 ) and Harvey ( 1994 ) used the quasi-maximum Likelihood Estimation, So (1997) and Shephard (1994) applied the EM algorithm to get the estimates. In this study, we adapt the Bayesian analysis, in which the Metropolis - Hastings is employed to construct a long run of Markov chain. And the Bayesian estimates can be thus obtained, for example the conditional sample means of desired parameters after some burn-in period. For the model fitting problems, we use the reversible jump Markov Chain Monte Carlo (RJMCMC) method to automatically choose the best models, in which models themselves are also considered as a new parameter. We demonstrate that our approach is correct in the simulation studies. Finally, the real financial data are applied, and both the conditional model selection methods,such as AIC, and our Bayesian approach yieldto the similar result. Yu-Jau Lin 林余昭 2009 學位論文 ; thesis 52 zh-TW
collection NDLTD
language zh-TW
format Others
sources NDLTD
description 碩士 === 中原大學 === 應用數學研究所 === 97 === In the last two decades, the volatility of the financial derivatives has been extremely large. One of the models that can capture the leptokurtosis and the volatility clustering phenomenon commonly seen in financial data is the Generalized Autoregressive Conditional Heteroscedasticity (GARCH) models. For the parameter estimation of such models, Harvey and Shephard ( 1993 ) and Harvey ( 1994 ) used the quasi-maximum Likelihood Estimation, So (1997) and Shephard (1994) applied the EM algorithm to get the estimates. In this study, we adapt the Bayesian analysis, in which the Metropolis - Hastings is employed to construct a long run of Markov chain. And the Bayesian estimates can be thus obtained, for example the conditional sample means of desired parameters after some burn-in period. For the model fitting problems, we use the reversible jump Markov Chain Monte Carlo (RJMCMC) method to automatically choose the best models, in which models themselves are also considered as a new parameter. We demonstrate that our approach is correct in the simulation studies. Finally, the real financial data are applied, and both the conditional model selection methods,such as AIC, and our Bayesian approach yieldto the similar result.
author2 Yu-Jau Lin
author_facet Yu-Jau Lin
Shao-Wu Chang
張少武
author Shao-Wu Chang
張少武
spellingShingle Shao-Wu Chang
張少武
A Bayesian Model Selection of Threshold AR-GARCH Models Using the Reversible Jump MCMC Approach
author_sort Shao-Wu Chang
title A Bayesian Model Selection of Threshold AR-GARCH Models Using the Reversible Jump MCMC Approach
title_short A Bayesian Model Selection of Threshold AR-GARCH Models Using the Reversible Jump MCMC Approach
title_full A Bayesian Model Selection of Threshold AR-GARCH Models Using the Reversible Jump MCMC Approach
title_fullStr A Bayesian Model Selection of Threshold AR-GARCH Models Using the Reversible Jump MCMC Approach
title_full_unstemmed A Bayesian Model Selection of Threshold AR-GARCH Models Using the Reversible Jump MCMC Approach
title_sort bayesian model selection of threshold ar-garch models using the reversible jump mcmc approach
publishDate 2009
url http://ndltd.ncl.edu.tw/handle/38273257539894184716
work_keys_str_mv AT shaowuchang abayesianmodelselectionofthresholdargarchmodelsusingthereversiblejumpmcmcapproach
AT zhāngshǎowǔ abayesianmodelselectionofthresholdargarchmodelsusingthereversiblejumpmcmcapproach
AT shaowuchang ménkǎnzìhuíguīgarchmóxíngzhīzuìjiāmóxíngxuǎnzé
AT zhāngshǎowǔ ménkǎnzìhuíguīgarchmóxíngzhīzuìjiāmóxíngxuǎnzé
AT shaowuchang bayesianmodelselectionofthresholdargarchmodelsusingthereversiblejumpmcmcapproach
AT zhāngshǎowǔ bayesianmodelselectionofthresholdargarchmodelsusingthereversiblejumpmcmcapproach
_version_ 1716852296279654400