Quenching Behavior of Parabolic Problems with Localized Reaction Term

碩士 === 大同大學 === 應用數學學系(所) === 96 === Let $\triangle $ be the Laplace operator in $n$ dimensional space. This paper studies the following the initial-boundary value problem with localized reaction term: \begin{align*} u_{t}(x,t)=\Delta u(x,t)+ \frac{1}{(1-u(x,t))^{p}}+\frac{1}{(1-u(x^{*},t))^{q}}, (...

Full description

Bibliographic Details
Main Authors: Yen-Huang Hsu, 許言鍠
Other Authors: Hon-hung Terence Liu
Format: Others
Language:en_US
Published: 2008
Online Access:http://ndltd.ncl.edu.tw/handle/32602782040633441848
id ndltd-TW-096TTU05507005
record_format oai_dc
spelling ndltd-TW-096TTU055070052016-05-13T04:14:59Z http://ndltd.ncl.edu.tw/handle/32602782040633441848 Quenching Behavior of Parabolic Problems with Localized Reaction Term 具局部反應項的拋物問題之漸滅現象 Yen-Huang Hsu 許言鍠 碩士 大同大學 應用數學學系(所) 96 Let $\triangle $ be the Laplace operator in $n$ dimensional space. This paper studies the following the initial-boundary value problem with localized reaction term: \begin{align*} u_{t}(x,t)=\Delta u(x,t)+ \frac{1}{(1-u(x,t))^{p}}+\frac{1}{(1-u(x^{*},t))^{q}}, (x,t)\in B\times(0,T), \end{align*} \begin{align*} u(x,0)=u_{0}(x), \ x\in B, \end{align*} \begin{align*} u(x,t)=0, \ (x,t)\in\partial B\times(0,T), \end{align*} where $B=\{x\in \Bbb{R}^n: \|x\|<1 \}$, $\partial B=\{x\in \Bbb{R}^n: \|x\| =1\}$, $x^{*}\in B$, $0<p,\ q<\infty$, $T>0$, and $u_{0}\geq 0$. The existence and quenching behavior of the problem are studied. For the case $x^{*}=0$, the quenching rate of solution near the quenching time is investigated. Hon-hung Terence Liu 廖漢雄 2008 學位論文 ; thesis 32 en_US
collection NDLTD
language en_US
format Others
sources NDLTD
description 碩士 === 大同大學 === 應用數學學系(所) === 96 === Let $\triangle $ be the Laplace operator in $n$ dimensional space. This paper studies the following the initial-boundary value problem with localized reaction term: \begin{align*} u_{t}(x,t)=\Delta u(x,t)+ \frac{1}{(1-u(x,t))^{p}}+\frac{1}{(1-u(x^{*},t))^{q}}, (x,t)\in B\times(0,T), \end{align*} \begin{align*} u(x,0)=u_{0}(x), \ x\in B, \end{align*} \begin{align*} u(x,t)=0, \ (x,t)\in\partial B\times(0,T), \end{align*} where $B=\{x\in \Bbb{R}^n: \|x\|<1 \}$, $\partial B=\{x\in \Bbb{R}^n: \|x\| =1\}$, $x^{*}\in B$, $0<p,\ q<\infty$, $T>0$, and $u_{0}\geq 0$. The existence and quenching behavior of the problem are studied. For the case $x^{*}=0$, the quenching rate of solution near the quenching time is investigated.
author2 Hon-hung Terence Liu
author_facet Hon-hung Terence Liu
Yen-Huang Hsu
許言鍠
author Yen-Huang Hsu
許言鍠
spellingShingle Yen-Huang Hsu
許言鍠
Quenching Behavior of Parabolic Problems with Localized Reaction Term
author_sort Yen-Huang Hsu
title Quenching Behavior of Parabolic Problems with Localized Reaction Term
title_short Quenching Behavior of Parabolic Problems with Localized Reaction Term
title_full Quenching Behavior of Parabolic Problems with Localized Reaction Term
title_fullStr Quenching Behavior of Parabolic Problems with Localized Reaction Term
title_full_unstemmed Quenching Behavior of Parabolic Problems with Localized Reaction Term
title_sort quenching behavior of parabolic problems with localized reaction term
publishDate 2008
url http://ndltd.ncl.edu.tw/handle/32602782040633441848
work_keys_str_mv AT yenhuanghsu quenchingbehaviorofparabolicproblemswithlocalizedreactionterm
AT xǔyánhuáng quenchingbehaviorofparabolicproblemswithlocalizedreactionterm
AT yenhuanghsu jùjúbùfǎnyīngxiàngdepāowùwèntízhījiànmièxiànxiàng
AT xǔyánhuáng jùjúbùfǎnyīngxiàngdepāowùwèntízhījiànmièxiànxiàng
_version_ 1718267125326413824