Quenching Behavior of Parabolic Problems with Localized Reaction Term
碩士 === 大同大學 === 應用數學學系(所) === 96 === Let $\triangle $ be the Laplace operator in $n$ dimensional space. This paper studies the following the initial-boundary value problem with localized reaction term: \begin{align*} u_{t}(x,t)=\Delta u(x,t)+ \frac{1}{(1-u(x,t))^{p}}+\frac{1}{(1-u(x^{*},t))^{q}}, (...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | en_US |
Published: |
2008
|
Online Access: | http://ndltd.ncl.edu.tw/handle/32602782040633441848 |
id |
ndltd-TW-096TTU05507005 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-096TTU055070052016-05-13T04:14:59Z http://ndltd.ncl.edu.tw/handle/32602782040633441848 Quenching Behavior of Parabolic Problems with Localized Reaction Term 具局部反應項的拋物問題之漸滅現象 Yen-Huang Hsu 許言鍠 碩士 大同大學 應用數學學系(所) 96 Let $\triangle $ be the Laplace operator in $n$ dimensional space. This paper studies the following the initial-boundary value problem with localized reaction term: \begin{align*} u_{t}(x,t)=\Delta u(x,t)+ \frac{1}{(1-u(x,t))^{p}}+\frac{1}{(1-u(x^{*},t))^{q}}, (x,t)\in B\times(0,T), \end{align*} \begin{align*} u(x,0)=u_{0}(x), \ x\in B, \end{align*} \begin{align*} u(x,t)=0, \ (x,t)\in\partial B\times(0,T), \end{align*} where $B=\{x\in \Bbb{R}^n: \|x\|<1 \}$, $\partial B=\{x\in \Bbb{R}^n: \|x\| =1\}$, $x^{*}\in B$, $0<p,\ q<\infty$, $T>0$, and $u_{0}\geq 0$. The existence and quenching behavior of the problem are studied. For the case $x^{*}=0$, the quenching rate of solution near the quenching time is investigated. Hon-hung Terence Liu 廖漢雄 2008 學位論文 ; thesis 32 en_US |
collection |
NDLTD |
language |
en_US |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 大同大學 === 應用數學學系(所) === 96 === Let $\triangle $ be the Laplace operator in
$n$ dimensional space. This paper studies the following the
initial-boundary value problem with localized reaction term:
\begin{align*}
u_{t}(x,t)=\Delta u(x,t)+
\frac{1}{(1-u(x,t))^{p}}+\frac{1}{(1-u(x^{*},t))^{q}},
(x,t)\in B\times(0,T),
\end{align*}
\begin{align*}
u(x,0)=u_{0}(x), \ x\in B,
\end{align*}
\begin{align*}
u(x,t)=0, \ (x,t)\in\partial B\times(0,T),
\end{align*}
where $B=\{x\in \Bbb{R}^n: \|x\|<1 \}$, $\partial B=\{x\in
\Bbb{R}^n: \|x\| =1\}$, $x^{*}\in B$, $0<p,\ q<\infty$, $T>0$,
and $u_{0}\geq 0$. The existence and quenching behavior of the
problem are studied. For the case $x^{*}=0$, the quenching rate
of solution near the quenching time is investigated.
|
author2 |
Hon-hung Terence Liu |
author_facet |
Hon-hung Terence Liu Yen-Huang Hsu 許言鍠 |
author |
Yen-Huang Hsu 許言鍠 |
spellingShingle |
Yen-Huang Hsu 許言鍠 Quenching Behavior of Parabolic Problems with Localized Reaction Term |
author_sort |
Yen-Huang Hsu |
title |
Quenching Behavior of Parabolic Problems with Localized Reaction Term |
title_short |
Quenching Behavior of Parabolic Problems with Localized Reaction Term |
title_full |
Quenching Behavior of Parabolic Problems with Localized Reaction Term |
title_fullStr |
Quenching Behavior of Parabolic Problems with Localized Reaction Term |
title_full_unstemmed |
Quenching Behavior of Parabolic Problems with Localized Reaction Term |
title_sort |
quenching behavior of parabolic problems with localized reaction term |
publishDate |
2008 |
url |
http://ndltd.ncl.edu.tw/handle/32602782040633441848 |
work_keys_str_mv |
AT yenhuanghsu quenchingbehaviorofparabolicproblemswithlocalizedreactionterm AT xǔyánhuáng quenchingbehaviorofparabolicproblemswithlocalizedreactionterm AT yenhuanghsu jùjúbùfǎnyīngxiàngdepāowùwèntízhījiànmièxiànxiàng AT xǔyánhuáng jùjúbùfǎnyīngxiàngdepāowùwèntízhījiànmièxiànxiàng |
_version_ |
1718267125326413824 |