A Study for Quadratic Eigenvalue Problems of Gyroscopic Systems

碩士 === 國立高雄大學 === 應用數學系碩士班 === 96 === We are interested in the quadratic eigenvalue problem (QEP) of gyroscopic systems G(λ )x ≡ (λ2M + λG + K)x = 0 , where M = M Τ , , . Among current developments, the quadratic inverse eigenvalue problem (QIEP) is particularly more important and challenging. In th...

Full description

Bibliographic Details
Main Authors: Chih-Chiang Yang, 楊智強
Other Authors: Yuen-Cheng Kuo
Format: Others
Language:en_US
Published: 2008
Online Access:http://ndltd.ncl.edu.tw/handle/59kp4g
id ndltd-TW-096NUK05507001
record_format oai_dc
spelling ndltd-TW-096NUK055070012019-05-15T19:49:29Z http://ndltd.ncl.edu.tw/handle/59kp4g A Study for Quadratic Eigenvalue Problems of Gyroscopic Systems 旋轉系統的二次特徵值問題之研究 Chih-Chiang Yang 楊智強 碩士 國立高雄大學 應用數學系碩士班 96 We are interested in the quadratic eigenvalue problem (QEP) of gyroscopic systems G(λ )x ≡ (λ2M + λG + K)x = 0 , where M = M Τ , , . Among current developments, the quadratic inverse eigenvalue problem (QIEP) is particularly more important and challenging. In this paper, we mainly consider a general solution for a QIEP of gyroscopic system with prescribed eigenpairs . Let G = −GΤ K = K Τ �k ℜn×n m := n + k m i i i x 1 {( , )} = λ k := 1+ 1+ n * . If , we can construct that, generically, there is a nonsingular quadratic pencil * 0 ≤ k ≤ k G(λ ) such that ( ) = 0 i i G λ x , for i = 1,L,m . Otherwise, if k ≤ k ≤ n * , we show that, generically, all quadratic pencil solutions are singular. We also derive the dimension of the solution subspace of the QIEP for both cases. Furthermore, we utilize some results to display an application of QIEP. Finally, the results of numerical examples illustrate our main consequences. Yuen-Cheng Kuo 郭岳承 2008 學位論文 ; thesis 33 en_US
collection NDLTD
language en_US
format Others
sources NDLTD
description 碩士 === 國立高雄大學 === 應用數學系碩士班 === 96 === We are interested in the quadratic eigenvalue problem (QEP) of gyroscopic systems G(λ )x ≡ (λ2M + λG + K)x = 0 , where M = M Τ , , . Among current developments, the quadratic inverse eigenvalue problem (QIEP) is particularly more important and challenging. In this paper, we mainly consider a general solution for a QIEP of gyroscopic system with prescribed eigenpairs . Let G = −GΤ K = K Τ �k ℜn×n m := n + k m i i i x 1 {( , )} = λ k := 1+ 1+ n * . If , we can construct that, generically, there is a nonsingular quadratic pencil * 0 ≤ k ≤ k G(λ ) such that ( ) = 0 i i G λ x , for i = 1,L,m . Otherwise, if k ≤ k ≤ n * , we show that, generically, all quadratic pencil solutions are singular. We also derive the dimension of the solution subspace of the QIEP for both cases. Furthermore, we utilize some results to display an application of QIEP. Finally, the results of numerical examples illustrate our main consequences.
author2 Yuen-Cheng Kuo
author_facet Yuen-Cheng Kuo
Chih-Chiang Yang
楊智強
author Chih-Chiang Yang
楊智強
spellingShingle Chih-Chiang Yang
楊智強
A Study for Quadratic Eigenvalue Problems of Gyroscopic Systems
author_sort Chih-Chiang Yang
title A Study for Quadratic Eigenvalue Problems of Gyroscopic Systems
title_short A Study for Quadratic Eigenvalue Problems of Gyroscopic Systems
title_full A Study for Quadratic Eigenvalue Problems of Gyroscopic Systems
title_fullStr A Study for Quadratic Eigenvalue Problems of Gyroscopic Systems
title_full_unstemmed A Study for Quadratic Eigenvalue Problems of Gyroscopic Systems
title_sort study for quadratic eigenvalue problems of gyroscopic systems
publishDate 2008
url http://ndltd.ncl.edu.tw/handle/59kp4g
work_keys_str_mv AT chihchiangyang astudyforquadraticeigenvalueproblemsofgyroscopicsystems
AT yángzhìqiáng astudyforquadraticeigenvalueproblemsofgyroscopicsystems
AT chihchiangyang xuánzhuǎnxìtǒngdeèrcìtèzhēngzhíwèntízhīyánjiū
AT yángzhìqiáng xuánzhuǎnxìtǒngdeèrcìtèzhēngzhíwèntízhīyánjiū
AT chihchiangyang studyforquadraticeigenvalueproblemsofgyroscopicsystems
AT yángzhìqiáng studyforquadraticeigenvalueproblemsofgyroscopicsystems
_version_ 1719095763961643008