A Study for Quadratic Eigenvalue Problems of Gyroscopic Systems
碩士 === 國立高雄大學 === 應用數學系碩士班 === 96 === We are interested in the quadratic eigenvalue problem (QEP) of gyroscopic systems G(λ )x ≡ (λ2M + λG + K)x = 0 , where M = M Τ , , . Among current developments, the quadratic inverse eigenvalue problem (QIEP) is particularly more important and challenging. In th...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | en_US |
Published: |
2008
|
Online Access: | http://ndltd.ncl.edu.tw/handle/59kp4g |
id |
ndltd-TW-096NUK05507001 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-096NUK055070012019-05-15T19:49:29Z http://ndltd.ncl.edu.tw/handle/59kp4g A Study for Quadratic Eigenvalue Problems of Gyroscopic Systems 旋轉系統的二次特徵值問題之研究 Chih-Chiang Yang 楊智強 碩士 國立高雄大學 應用數學系碩士班 96 We are interested in the quadratic eigenvalue problem (QEP) of gyroscopic systems G(λ )x ≡ (λ2M + λG + K)x = 0 , where M = M Τ , , . Among current developments, the quadratic inverse eigenvalue problem (QIEP) is particularly more important and challenging. In this paper, we mainly consider a general solution for a QIEP of gyroscopic system with prescribed eigenpairs . Let G = −GΤ K = K Τ �k ℜn×n m := n + k m i i i x 1 {( , )} = λ k := 1+ 1+ n * . If , we can construct that, generically, there is a nonsingular quadratic pencil * 0 ≤ k ≤ k G(λ ) such that ( ) = 0 i i G λ x , for i = 1,L,m . Otherwise, if k ≤ k ≤ n * , we show that, generically, all quadratic pencil solutions are singular. We also derive the dimension of the solution subspace of the QIEP for both cases. Furthermore, we utilize some results to display an application of QIEP. Finally, the results of numerical examples illustrate our main consequences. Yuen-Cheng Kuo 郭岳承 2008 學位論文 ; thesis 33 en_US |
collection |
NDLTD |
language |
en_US |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 國立高雄大學 === 應用數學系碩士班 === 96 === We are interested in the quadratic eigenvalue problem (QEP) of gyroscopic systems
G(λ )x ≡ (λ2M + λG + K)x = 0 , where M = M Τ , , . Among
current developments, the quadratic inverse eigenvalue problem (QIEP) is particularly more
important and challenging. In this paper, we mainly consider a general solution for a QIEP of
gyroscopic system with prescribed eigenpairs . Let
G = −GΤ K = K Τ �k ℜn×n
m := n + k m
i i i x 1 {( , )} = λ k := 1+ 1+ n * .
If , we can construct that, generically, there is a nonsingular quadratic pencil * 0 ≤ k ≤ k
G(λ ) such that ( ) = 0 i i G λ x , for i = 1,L,m . Otherwise, if k ≤ k ≤ n * , we show that,
generically, all quadratic pencil solutions are singular. We also derive the dimension of the
solution subspace of the QIEP for both cases. Furthermore, we utilize some results to display
an application of QIEP. Finally, the results of numerical examples illustrate our main
consequences.
|
author2 |
Yuen-Cheng Kuo |
author_facet |
Yuen-Cheng Kuo Chih-Chiang Yang 楊智強 |
author |
Chih-Chiang Yang 楊智強 |
spellingShingle |
Chih-Chiang Yang 楊智強 A Study for Quadratic Eigenvalue Problems of Gyroscopic Systems |
author_sort |
Chih-Chiang Yang |
title |
A Study for Quadratic Eigenvalue Problems of Gyroscopic Systems |
title_short |
A Study for Quadratic Eigenvalue Problems of Gyroscopic Systems |
title_full |
A Study for Quadratic Eigenvalue Problems of Gyroscopic Systems |
title_fullStr |
A Study for Quadratic Eigenvalue Problems of Gyroscopic Systems |
title_full_unstemmed |
A Study for Quadratic Eigenvalue Problems of Gyroscopic Systems |
title_sort |
study for quadratic eigenvalue problems of gyroscopic systems |
publishDate |
2008 |
url |
http://ndltd.ncl.edu.tw/handle/59kp4g |
work_keys_str_mv |
AT chihchiangyang astudyforquadraticeigenvalueproblemsofgyroscopicsystems AT yángzhìqiáng astudyforquadraticeigenvalueproblemsofgyroscopicsystems AT chihchiangyang xuánzhuǎnxìtǒngdeèrcìtèzhēngzhíwèntízhīyánjiū AT yángzhìqiáng xuánzhuǎnxìtǒngdeèrcìtèzhēngzhíwèntízhīyánjiū AT chihchiangyang studyforquadraticeigenvalueproblemsofgyroscopicsystems AT yángzhìqiáng studyforquadraticeigenvalueproblemsofgyroscopicsystems |
_version_ |
1719095763961643008 |