Applications of feature space distance measures in training support vector classifiers

博士 === 國立臺灣大學 === 電機工程學研究所 === 96 === Determining the kernel and error penalty parameters for support vector machines (SVMs) is very problem-dependent in practice. The most popular method to decide the parameters is the grid search method. In the training process, classifiers are trained with differ...

Full description

Bibliographic Details
Main Authors: Kuo-Ping Wu, 吳國賓
Other Authors: 王勝德
Format: Others
Language:en_US
Published: 2008
Online Access:http://ndltd.ncl.edu.tw/handle/66064360761867794430

Similar Items