Design and Fabrication of High Quality-factorSuspending Microinductors
碩士 === 國立中山大學 === 電機工程學系研究所 === 96 === For the application of 4G wireless communication system, this thesis aims to develop a high-quality-factor and low-power-dissipation suspending micro-inductor using electrochemical deposition and surface micromachining technologies. This research presents three...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | zh-TW |
Published: |
2008
|
Online Access: | http://ndltd.ncl.edu.tw/handle/49914421079214666861 |
id |
ndltd-TW-096NSYS5442146 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-096NSYS54421462016-05-11T04:16:01Z http://ndltd.ncl.edu.tw/handle/49914421079214666861 Design and Fabrication of High Quality-factorSuspending Microinductors 具高品質因子之懸浮式微型電感器設計與製作 Zong-Nan Jiang 江宗南 碩士 國立中山大學 電機工程學系研究所 96 For the application of 4G wireless communication system, this thesis aims to develop a high-quality-factor and low-power-dissipation suspending micro-inductor using electrochemical deposition and surface micromachining technologies. This research presents three technical points to improve the quality factor and reduce the power dissipation of micro inductor, including (i) to adopt a low resistivity material (copper) as the conducting layer to decrease the Eddy current due to the skin effect and reduce the total series resistance and energy loss, (ii) to utilize a suspending structure to diminish the power loss through the substrate and (iii) to replace the silicon wafer with a high resistance substrate (Corning 7740) to compress effectively the power dissipation in high frequency operation. The implemented suspending micro-inductors were characterized by a commercial network analyzer (Agilent E5071C) under 0.5~20 GHz testing frequency range. All the inductances and quality factors of the micro-inductors proposed in this thesis are extracted by the Agilent ADS software. The optimized value of the quality factor is around to 24.9 and the corresponding inductance is equal to 5.43 nH . I-Yu Huang 黃義佑 2008 學位論文 ; thesis 82 zh-TW |
collection |
NDLTD |
language |
zh-TW |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 國立中山大學 === 電機工程學系研究所 === 96 === For the application of 4G wireless communication system, this thesis
aims to develop a high-quality-factor and low-power-dissipation
suspending micro-inductor using electrochemical deposition and surface
micromachining technologies.
This research presents three technical points to improve the quality
factor and reduce the power dissipation of micro inductor, including (i) to
adopt a low resistivity material (copper) as the conducting layer to
decrease the Eddy current due to the skin effect and reduce the total series
resistance and energy loss, (ii) to utilize a suspending structure to
diminish the power loss through the substrate and (iii) to replace the
silicon wafer with a high resistance substrate (Corning 7740) to compress
effectively the power dissipation in high frequency operation.
The implemented suspending micro-inductors were characterized by a
commercial network analyzer (Agilent E5071C) under 0.5~20 GHz
testing frequency range. All the inductances and quality factors of the
micro-inductors proposed in this thesis are extracted by the Agilent ADS
software. The optimized value of the quality factor is around to 24.9 and
the corresponding inductance is equal to 5.43 nH .
|
author2 |
I-Yu Huang |
author_facet |
I-Yu Huang Zong-Nan Jiang 江宗南 |
author |
Zong-Nan Jiang 江宗南 |
spellingShingle |
Zong-Nan Jiang 江宗南 Design and Fabrication of High Quality-factorSuspending Microinductors |
author_sort |
Zong-Nan Jiang |
title |
Design and Fabrication of High Quality-factorSuspending Microinductors |
title_short |
Design and Fabrication of High Quality-factorSuspending Microinductors |
title_full |
Design and Fabrication of High Quality-factorSuspending Microinductors |
title_fullStr |
Design and Fabrication of High Quality-factorSuspending Microinductors |
title_full_unstemmed |
Design and Fabrication of High Quality-factorSuspending Microinductors |
title_sort |
design and fabrication of high quality-factorsuspending microinductors |
publishDate |
2008 |
url |
http://ndltd.ncl.edu.tw/handle/49914421079214666861 |
work_keys_str_mv |
AT zongnanjiang designandfabricationofhighqualityfactorsuspendingmicroinductors AT jiāngzōngnán designandfabricationofhighqualityfactorsuspendingmicroinductors AT zongnanjiang jùgāopǐnzhìyīnzizhīxuánfúshìwēixíngdiàngǎnqìshèjìyǔzhìzuò AT jiāngzōngnán jùgāopǐnzhìyīnzizhīxuánfúshìwēixíngdiàngǎnqìshèjìyǔzhìzuò |
_version_ |
1718264335833235456 |