Numerical Investigation for Real Bifurcation and Hopf Bifurcation Problems of Steady-State Solution Paths of A Non-adiabatic Tubular Reactor Model

碩士 === 國立新竹教育大學 === 應用數學系碩士班 === 96 === The thesis investigates real bifurcation points, Hopf bifurcation points and solution branches of steady-state solution paths of a non-adiabatic tubular reactor model. We use Hopf bifurcation theorem, shooting method, Rung-Kutta integral formula and Newton...

Full description

Bibliographic Details
Main Authors: Juang Jing Sheng, 莊景勝
Other Authors: Jen Kuo Ching
Format: Others
Language:zh-TW
Online Access:http://ndltd.ncl.edu.tw/handle/50921211429671535994
id ndltd-TW-096NHCT5507006
record_format oai_dc
spelling ndltd-TW-096NHCT55070062015-11-27T04:04:36Z http://ndltd.ncl.edu.tw/handle/50921211429671535994 Numerical Investigation for Real Bifurcation and Hopf Bifurcation Problems of Steady-State Solution Paths of A Non-adiabatic Tubular Reactor Model ㄧ個非絕熱管狀反應器模型平衡解路徑上的實分歧與Hopf分歧問題探討 Juang Jing Sheng 莊景勝 碩士 國立新竹教育大學 應用數學系碩士班 96 The thesis investigates real bifurcation points, Hopf bifurcation points and solution branches of steady-state solution paths of a non-adiabatic tubular reactor model. We use Hopf bifurcation theorem, shooting method, Rung-Kutta integral formula and Newton’s interative method to calculate real bifurcation points and Hopf bifurcation points. We use implicit function theorem, Liapunov-Schmidt reduction method, tangent-predictor method, secant-predictor method and pseudo-arclength continuation method to figure out all solution branches of steady-state solution paths bifurcating from real bifurcation points and Hopf bifurcation points. Finally, we change the parameters to find real bifurcation points, Hopf bifurcation points and bifurcation diagram of the model. Jen Kuo Ching 簡國清 學位論文 ; thesis 131 zh-TW
collection NDLTD
language zh-TW
format Others
sources NDLTD
description 碩士 === 國立新竹教育大學 === 應用數學系碩士班 === 96 === The thesis investigates real bifurcation points, Hopf bifurcation points and solution branches of steady-state solution paths of a non-adiabatic tubular reactor model. We use Hopf bifurcation theorem, shooting method, Rung-Kutta integral formula and Newton’s interative method to calculate real bifurcation points and Hopf bifurcation points. We use implicit function theorem, Liapunov-Schmidt reduction method, tangent-predictor method, secant-predictor method and pseudo-arclength continuation method to figure out all solution branches of steady-state solution paths bifurcating from real bifurcation points and Hopf bifurcation points. Finally, we change the parameters to find real bifurcation points, Hopf bifurcation points and bifurcation diagram of the model.
author2 Jen Kuo Ching
author_facet Jen Kuo Ching
Juang Jing Sheng
莊景勝
author Juang Jing Sheng
莊景勝
spellingShingle Juang Jing Sheng
莊景勝
Numerical Investigation for Real Bifurcation and Hopf Bifurcation Problems of Steady-State Solution Paths of A Non-adiabatic Tubular Reactor Model
author_sort Juang Jing Sheng
title Numerical Investigation for Real Bifurcation and Hopf Bifurcation Problems of Steady-State Solution Paths of A Non-adiabatic Tubular Reactor Model
title_short Numerical Investigation for Real Bifurcation and Hopf Bifurcation Problems of Steady-State Solution Paths of A Non-adiabatic Tubular Reactor Model
title_full Numerical Investigation for Real Bifurcation and Hopf Bifurcation Problems of Steady-State Solution Paths of A Non-adiabatic Tubular Reactor Model
title_fullStr Numerical Investigation for Real Bifurcation and Hopf Bifurcation Problems of Steady-State Solution Paths of A Non-adiabatic Tubular Reactor Model
title_full_unstemmed Numerical Investigation for Real Bifurcation and Hopf Bifurcation Problems of Steady-State Solution Paths of A Non-adiabatic Tubular Reactor Model
title_sort numerical investigation for real bifurcation and hopf bifurcation problems of steady-state solution paths of a non-adiabatic tubular reactor model
url http://ndltd.ncl.edu.tw/handle/50921211429671535994
work_keys_str_mv AT juangjingsheng numericalinvestigationforrealbifurcationandhopfbifurcationproblemsofsteadystatesolutionpathsofanonadiabatictubularreactormodel
AT zhuāngjǐngshèng numericalinvestigationforrealbifurcationandhopfbifurcationproblemsofsteadystatesolutionpathsofanonadiabatictubularreactormodel
AT juangjingsheng yi1gèfēijuérèguǎnzhuàngfǎnyīngqìmóxíngpínghéngjiělùjìngshàngdeshífēnqíyǔhopffēnqíwèntítàntǎo
AT zhuāngjǐngshèng yi1gèfēijuérèguǎnzhuàngfǎnyīngqìmóxíngpínghéngjiělùjìngshàngdeshífēnqíyǔhopffēnqíwèntítàntǎo
_version_ 1718138799405400064