Optical Transmission Systems and Networks based on Double-Sideband Modulation with Suppressed Carrier and Digital-Signal-Processing Techniques

博士 === 國立交通大學 === 電信工程系所 === 96 === In this dissertation, we study the optical transmission systems and networks based on double-sideband modulation with suppressed carrier (DSB-SC) and digital signal processing (DSP) techniques. The main research results are organized in two parts. In the first pa...

Full description

Bibliographic Details
Main Authors: Chia-Kai Weng, 翁佳愷
Other Authors: Winston I. Way
Format: Others
Language:en_US
Published: 2008
Online Access:http://ndltd.ncl.edu.tw/handle/87481209308599994197
Description
Summary:博士 === 國立交通大學 === 電信工程系所 === 96 === In this dissertation, we study the optical transmission systems and networks based on double-sideband modulation with suppressed carrier (DSB-SC) and digital signal processing (DSP) techniques. The main research results are organized in two parts. In the first part, we experimentally and analytically proved the feasibility of a 100km radio-over- fiber (ROF) system using a 16-QAM signal with 5Gb/s bit rate and a carrier frequency of 18 GHz. The transmission system performance was analyzed by considering optical amplifier noise, fiber nonlinearity, phase noise, frequency response, and analog-to-digital converter (ADC) quantization noise. The 18 GHz, 16-QAM signal could be sent from the base station to a remote antenna port without any up-converter, and the remote terminal consists of a down-converter and high-speed digital signal processors (DSPs) to recover the 16-QAM signal. The high-speed DSP, which partially compensates the inter-symbol-interference (ISI) and phase-noise-induced system penalties, was enabled by 20 Gs/s ADCs. The algorithms used in the DSP blocks were also described in details. In the second part of this dissertation, a single-fiber optical unidirectional-path-switched ring (UPSR) based on subcarrier multiplexed double-sideband modulation with suppressed carrier was proposed and experimentally verified. This single-fiber UPSR architecture can be used to reduce the number of required optical transmitters, i.e., a single DSB-SC transmitter can be used for both east- and west-bound wavelengths.