Computational Complexity for Various Types of Stochastic Algorithms for Global Optimization

碩士 === 國立成功大學 === 數學系應用數學碩博士班 === 96 === This thesis analyzes three stochastic algorithms for global optimization on continuous domain, including the Pure Random Search (PRS), the Pure Adaptive Search(PAS), and the Hesitant Adaptive Search(HAS). Let $overline{y}$ denote the given target value, and $...

Full description

Bibliographic Details
Main Authors: Shih-shan Lin, 林詩珊
Other Authors: Ruey-lin Sheu
Format: Others
Language:en_US
Published: 2008
Online Access:http://ndltd.ncl.edu.tw/handle/42669643818873702280
id ndltd-TW-096NCKU5507017
record_format oai_dc
spelling ndltd-TW-096NCKU55070172015-11-23T04:03:10Z http://ndltd.ncl.edu.tw/handle/42669643818873702280 Computational Complexity for Various Types of Stochastic Algorithms for Global Optimization 數種解決全域最佳化的隨機演算法之計算複雜度分析 Shih-shan Lin 林詩珊 碩士 國立成功大學 數學系應用數學碩博士班 96 This thesis analyzes three stochastic algorithms for global optimization on continuous domain, including the Pure Random Search (PRS), the Pure Adaptive Search(PAS), and the Hesitant Adaptive Search(HAS). Let $overline{y}$ denote the given target value, and $N(overline{y})$ the number of iterations to achieve a value less than or equal to $overline{y}$. We are concerned with the expectation $E[N(overline{y})]$, a kind of measure for the computational complexity of an algorithm. We found that for PRS, $E[N(overline{y})]$ is inversely proportional to $p(overline{y})$ where $p(overline{y})$ is the probability to select a point with its objective function value at most $overline{y}$. For PAS, $E[N(overline{y})]$ is the logarithm of that for PRS. For HAS, the expected number is a function of $p(overline{y})$ and $b(overline{y})$ where $b(y)$ is the probability of choosing a point with the objective function value strictly less than $y$. When $b(overline{y})$ equals to one, the expected number coincides with that of PAS. Ruey-lin Sheu 許瑞麟 2008 學位論文 ; thesis 46 en_US
collection NDLTD
language en_US
format Others
sources NDLTD
description 碩士 === 國立成功大學 === 數學系應用數學碩博士班 === 96 === This thesis analyzes three stochastic algorithms for global optimization on continuous domain, including the Pure Random Search (PRS), the Pure Adaptive Search(PAS), and the Hesitant Adaptive Search(HAS). Let $overline{y}$ denote the given target value, and $N(overline{y})$ the number of iterations to achieve a value less than or equal to $overline{y}$. We are concerned with the expectation $E[N(overline{y})]$, a kind of measure for the computational complexity of an algorithm. We found that for PRS, $E[N(overline{y})]$ is inversely proportional to $p(overline{y})$ where $p(overline{y})$ is the probability to select a point with its objective function value at most $overline{y}$. For PAS, $E[N(overline{y})]$ is the logarithm of that for PRS. For HAS, the expected number is a function of $p(overline{y})$ and $b(overline{y})$ where $b(y)$ is the probability of choosing a point with the objective function value strictly less than $y$. When $b(overline{y})$ equals to one, the expected number coincides with that of PAS.
author2 Ruey-lin Sheu
author_facet Ruey-lin Sheu
Shih-shan Lin
林詩珊
author Shih-shan Lin
林詩珊
spellingShingle Shih-shan Lin
林詩珊
Computational Complexity for Various Types of Stochastic Algorithms for Global Optimization
author_sort Shih-shan Lin
title Computational Complexity for Various Types of Stochastic Algorithms for Global Optimization
title_short Computational Complexity for Various Types of Stochastic Algorithms for Global Optimization
title_full Computational Complexity for Various Types of Stochastic Algorithms for Global Optimization
title_fullStr Computational Complexity for Various Types of Stochastic Algorithms for Global Optimization
title_full_unstemmed Computational Complexity for Various Types of Stochastic Algorithms for Global Optimization
title_sort computational complexity for various types of stochastic algorithms for global optimization
publishDate 2008
url http://ndltd.ncl.edu.tw/handle/42669643818873702280
work_keys_str_mv AT shihshanlin computationalcomplexityforvarioustypesofstochasticalgorithmsforglobaloptimization
AT línshīshān computationalcomplexityforvarioustypesofstochasticalgorithmsforglobaloptimization
AT shihshanlin shùzhǒngjiějuéquányùzuìjiāhuàdesuíjīyǎnsuànfǎzhījìsuànfùzádùfēnxī
AT línshīshān shùzhǒngjiějuéquányùzuìjiāhuàdesuíjīyǎnsuànfǎzhījìsuànfùzádùfēnxī
_version_ 1718134147778609152