Equivalence between Weight Decay Learning and Explicit Regularization to Improve Fault Tolerance of RBF

碩士 === 朝陽科技大學 === 網路與通訊研究所 === 96 === This thesis studies the fault tolerant performance of a radial basis function (RBF) network being trained to against the multiplicative weight noise (MWN) using both weight decay learning (WDL) and explicit regularization learning (ERL). It is shown analytical t...

Full description

Bibliographic Details
Main Authors: Wun-He Luo, 羅文和
Other Authors: John Sum
Format: Others
Language:zh-TW
Published: 2008
Online Access:http://ndltd.ncl.edu.tw/handle/91062868963543008427
id ndltd-TW-096CYUT5650006
record_format oai_dc
spelling ndltd-TW-096CYUT56500062015-11-27T04:04:14Z http://ndltd.ncl.edu.tw/handle/91062868963543008427 Equivalence between Weight Decay Learning and Explicit Regularization to Improve Fault Tolerance of RBF 權重衰退學習與明確正規化學習於幅狀基底函數網路之容錯訓練 Wun-He Luo 羅文和 碩士 朝陽科技大學 網路與通訊研究所 96 This thesis studies the fault tolerant performance of a radial basis function (RBF) network being trained to against the multiplicative weight noise (MWN) using both weight decay learning (WDL) and explicit regularization learning (ERL). It is shown analytical that the fault tolerant abilities of WDL and ERL against MWN are similar if the number of training data is large and is demonstrated by simulations on 1D and 2D problems. John Sum Yung-Fa Huang 沈培輝 黃永發 2008 學位論文 ; thesis 59 zh-TW
collection NDLTD
language zh-TW
format Others
sources NDLTD
description 碩士 === 朝陽科技大學 === 網路與通訊研究所 === 96 === This thesis studies the fault tolerant performance of a radial basis function (RBF) network being trained to against the multiplicative weight noise (MWN) using both weight decay learning (WDL) and explicit regularization learning (ERL). It is shown analytical that the fault tolerant abilities of WDL and ERL against MWN are similar if the number of training data is large and is demonstrated by simulations on 1D and 2D problems.
author2 John Sum
author_facet John Sum
Wun-He Luo
羅文和
author Wun-He Luo
羅文和
spellingShingle Wun-He Luo
羅文和
Equivalence between Weight Decay Learning and Explicit Regularization to Improve Fault Tolerance of RBF
author_sort Wun-He Luo
title Equivalence between Weight Decay Learning and Explicit Regularization to Improve Fault Tolerance of RBF
title_short Equivalence between Weight Decay Learning and Explicit Regularization to Improve Fault Tolerance of RBF
title_full Equivalence between Weight Decay Learning and Explicit Regularization to Improve Fault Tolerance of RBF
title_fullStr Equivalence between Weight Decay Learning and Explicit Regularization to Improve Fault Tolerance of RBF
title_full_unstemmed Equivalence between Weight Decay Learning and Explicit Regularization to Improve Fault Tolerance of RBF
title_sort equivalence between weight decay learning and explicit regularization to improve fault tolerance of rbf
publishDate 2008
url http://ndltd.ncl.edu.tw/handle/91062868963543008427
work_keys_str_mv AT wunheluo equivalencebetweenweightdecaylearningandexplicitregularizationtoimprovefaulttoleranceofrbf
AT luówénhé equivalencebetweenweightdecaylearningandexplicitregularizationtoimprovefaulttoleranceofrbf
AT wunheluo quánzhòngshuāituìxuéxíyǔmíngquèzhèngguīhuàxuéxíyúfúzhuàngjīdǐhánshùwǎnglùzhīróngcuòxùnliàn
AT luówénhé quánzhòngshuāituìxuéxíyǔmíngquèzhèngguīhuàxuéxíyúfúzhuàngjīdǐhánshùwǎnglùzhīróngcuòxùnliàn
_version_ 1718137350919290880