Summary: | 碩士 === 淡江大學 === 化學工程與材料工程學系碩士班 === 95 === The thermal diffusion separation process can be applied to the separation of highly valuable materials, which are difficult or impossible to separate by other convention means, such as distillation, extraction, etc. The phenomena of mass transfer through a thermogravitational thermal-diffusion column with uniform wall temperature, one heated and the other cooled, has been investigated theoretically by transport equation for low volumetric flow rate and for high volumetric flow rate, respectively.
The influences of the operating and design parameters in a classical Clusius-Dickel column on separation efficiencies for H2-HD-D2 system, have been investigated theoretically. The transport coefficients, H and K, are correlated from the experimental data with the pressure and volumetric flow rate in the previous study. The results of the degree of separation efficiency are represented graphically with the operating parameters (feed rate, feed concentration, pressure, product flow-rate and feed position) and design parameters (aspect ratio, inclined angle, plate spacing and plate-spacing under the considerations of fixed operating expense) as parameters. The effects of the operating and design parameters on the separation efficiency enrichment are also discussed.
|