Finite Subgroups of Units in Integral Group Rings
碩士 === 國立臺灣師範大學 === 數學系 === 95 === In the 1960's, H. Zassenhaus made three conjectures about torsion units and finite subgroups of the units in integral group rings. The strongest one (ZC-3) states: If H is a finite subgroup of the unit group of augmentation 1 in the integral group ring ZG, the...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Language: | en_US |
Published: |
2007
|
Online Access: | http://ndltd.ncl.edu.tw/handle/71874570552142722682 |
id |
ndltd-TW-095NTNU5479006 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-095NTNU54790062016-05-23T04:17:31Z http://ndltd.ncl.edu.tw/handle/71874570552142722682 Finite Subgroups of Units in Integral Group Rings 整係數群環裡的有限乘法群 劉任浩 碩士 國立臺灣師範大學 數學系 95 In the 1960's, H. Zassenhaus made three conjectures about torsion units and finite subgroups of the units in integral group rings. The strongest one (ZC-3) states: If H is a finite subgroup of the unit group of augmentation 1 in the integral group ring ZG, then H is conjugate to a subgroup of G in QG. In this thesis, we prove that ZC-3 holds for groups of order p^2q, where p, q are distinct primes. 劉家新 2007 學位論文 ; thesis 34 en_US |
collection |
NDLTD |
language |
en_US |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 國立臺灣師範大學 === 數學系 === 95 === In the 1960's, H. Zassenhaus made three conjectures about torsion units and finite subgroups of the units in integral group rings.
The strongest one (ZC-3) states:
If H is a finite subgroup of the unit group of augmentation 1 in the integral group ring ZG, then H is conjugate to a subgroup of G in QG.
In this thesis, we prove that ZC-3 holds for groups of order p^2q, where p, q are distinct primes.
|
author2 |
劉家新 |
author_facet |
劉家新 劉任浩 |
author |
劉任浩 |
spellingShingle |
劉任浩 Finite Subgroups of Units in Integral Group Rings |
author_sort |
劉任浩 |
title |
Finite Subgroups of Units in Integral Group Rings |
title_short |
Finite Subgroups of Units in Integral Group Rings |
title_full |
Finite Subgroups of Units in Integral Group Rings |
title_fullStr |
Finite Subgroups of Units in Integral Group Rings |
title_full_unstemmed |
Finite Subgroups of Units in Integral Group Rings |
title_sort |
finite subgroups of units in integral group rings |
publishDate |
2007 |
url |
http://ndltd.ncl.edu.tw/handle/71874570552142722682 |
work_keys_str_mv |
AT liúrènhào finitesubgroupsofunitsinintegralgrouprings AT liúrènhào zhěngxìshùqúnhuánlǐdeyǒuxiànchéngfǎqún |
_version_ |
1718278008550195200 |