Finite Subgroups of Units in Integral Group Rings

碩士 === 國立臺灣師範大學 === 數學系 === 95 === In the 1960's, H. Zassenhaus made three conjectures about torsion units and finite subgroups of the units in integral group rings. The strongest one (ZC-3) states: If H is a finite subgroup of the unit group of augmentation 1 in the integral group ring ZG, the...

Full description

Bibliographic Details
Main Author: 劉任浩
Other Authors: 劉家新
Format: Others
Language:en_US
Published: 2007
Online Access:http://ndltd.ncl.edu.tw/handle/71874570552142722682
id ndltd-TW-095NTNU5479006
record_format oai_dc
spelling ndltd-TW-095NTNU54790062016-05-23T04:17:31Z http://ndltd.ncl.edu.tw/handle/71874570552142722682 Finite Subgroups of Units in Integral Group Rings 整係數群環裡的有限乘法群 劉任浩 碩士 國立臺灣師範大學 數學系 95 In the 1960's, H. Zassenhaus made three conjectures about torsion units and finite subgroups of the units in integral group rings. The strongest one (ZC-3) states: If H is a finite subgroup of the unit group of augmentation 1 in the integral group ring ZG, then H is conjugate to a subgroup of G in QG. In this thesis, we prove that ZC-3 holds for groups of order p^2q, where p, q are distinct primes. 劉家新 2007 學位論文 ; thesis 34 en_US
collection NDLTD
language en_US
format Others
sources NDLTD
description 碩士 === 國立臺灣師範大學 === 數學系 === 95 === In the 1960's, H. Zassenhaus made three conjectures about torsion units and finite subgroups of the units in integral group rings. The strongest one (ZC-3) states: If H is a finite subgroup of the unit group of augmentation 1 in the integral group ring ZG, then H is conjugate to a subgroup of G in QG. In this thesis, we prove that ZC-3 holds for groups of order p^2q, where p, q are distinct primes.
author2 劉家新
author_facet 劉家新
劉任浩
author 劉任浩
spellingShingle 劉任浩
Finite Subgroups of Units in Integral Group Rings
author_sort 劉任浩
title Finite Subgroups of Units in Integral Group Rings
title_short Finite Subgroups of Units in Integral Group Rings
title_full Finite Subgroups of Units in Integral Group Rings
title_fullStr Finite Subgroups of Units in Integral Group Rings
title_full_unstemmed Finite Subgroups of Units in Integral Group Rings
title_sort finite subgroups of units in integral group rings
publishDate 2007
url http://ndltd.ncl.edu.tw/handle/71874570552142722682
work_keys_str_mv AT liúrènhào finitesubgroupsofunitsinintegralgrouprings
AT liúrènhào zhěngxìshùqúnhuánlǐdeyǒuxiànchéngfǎqún
_version_ 1718278008550195200