The Application of Functionalized Gold Nanoparticle on Biotechnology

博士 === 國立臺灣師範大學 === 化學系 === 95 === Metal and semiconductor nanoparticles coupling with biomolecules have attracted great interests recently because the resulting materials may bring new applications in biological systems. The strong and selective binding of carbohydrate-AuNP to bacterial presents a...

Full description

Bibliographic Details
Main Authors: Yang Chan-Yi, 楊正義
Other Authors: Chen Chia-Chun
Format: Others
Language:en_US
Published: 2007
Online Access:http://ndltd.ncl.edu.tw/handle/65701209710329669500
Description
Summary:博士 === 國立臺灣師範大學 === 化學系 === 95 === Metal and semiconductor nanoparticles coupling with biomolecules have attracted great interests recently because the resulting materials may bring new applications in biological systems. The strong and selective binding of carbohydrate-AuNP to bacterial presents a novel method of labeling specific protein on the cell surface using carbohydrate conjugated nanoparticles. Moreover, in comparison with the conventional sandwich immunoassay, the biomolecule conjugated nanoparticles can provide a relatively easy and direct method to visualize the target receptors on the cell surface under an electron microscope. On the other hands, the multivalent interactions between carbohydrate-AuNPs and target lectins were studied by the SPR technique to quantitatively analyze the binding affinity. The results showed that the binding of mannose encapsulated AuNPs with Con A and galactose encapsulated AuNPs with VAA-I exhibited a strong multivalent effect, and the binding specificity between carbohydrate-AuNP and the lectin was similar to that of the monovalent counterparts. The relative inhibit potency (RIP) values of carbohydrate-AuNPs indicate that the larger size of AuNP and longer ligand length present excellent binding affinity both in interaction with Con A and VAA-I, respectively. Our results demonstrate that gold nanoparticle can serve as an excellent multivalent carbohydrate ligand carrier, providing a new route for designing inhibitors and biological effectors for target proteins.