The Centroids of Trapezoidal Fuzzy Numbers
碩士 === 國立臺南大學 === 數學教育學系碩士班 === 95 === By using the centroid formulae for fuzzy numbers in Wang’s paper (2006) , in this paper we want to explore the variances of the centroids of trapezoidal fuzzy numbers after geometrical variations. We have the results as follows : 1. When the geometric graph of...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | zh-TW |
Online Access: | http://ndltd.ncl.edu.tw/handle/10584383505606151427 |
id |
ndltd-TW-095NTNT5480030 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-095NTNT54800302015-11-23T04:03:32Z http://ndltd.ncl.edu.tw/handle/10584383505606151427 The Centroids of Trapezoidal Fuzzy Numbers 梯形模糊數重心之探討 Li-yun Lin 林莉芸 碩士 國立臺南大學 數學教育學系碩士班 95 By using the centroid formulae for fuzzy numbers in Wang’s paper (2006) , in this paper we want to explore the variances of the centroids of trapezoidal fuzzy numbers after geometrical variations. We have the results as follows : 1. When the geometric graph of a trapezoidal fuzzy number is similar to another one, it has the corresponding centroid.. 2. Isosceles trapezoidal fuzzy numbers keep the coordinate on horizontal axis under expanding or contracting the upper and bottom sides. 3. Isosceles trapezoidal fuzzy numbers keep the coordinate on vertical axis under expanding the upper side. Moreover, by using Chu and Tsao’s area method(2002) for ranking fuzzy numbers ,we have the influence of geometrical variations on ranking fuzzy numbers. Bih-Sheue Shieh 謝碧雪 學位論文 ; thesis 23 zh-TW |
collection |
NDLTD |
language |
zh-TW |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 國立臺南大學 === 數學教育學系碩士班 === 95 === By using the centroid formulae for fuzzy numbers in Wang’s paper (2006) , in this paper we want to explore the variances of the centroids of trapezoidal fuzzy numbers after geometrical variations.
We have the results as follows :
1. When the geometric graph of a trapezoidal fuzzy number is similar to another one, it has the corresponding centroid..
2. Isosceles trapezoidal fuzzy numbers keep the coordinate on horizontal axis under expanding or contracting the upper and bottom sides.
3. Isosceles trapezoidal fuzzy numbers keep the coordinate on vertical axis under expanding the upper side.
Moreover, by using Chu and Tsao’s area method(2002) for ranking fuzzy numbers ,we have the influence of geometrical variations on ranking fuzzy numbers.
|
author2 |
Bih-Sheue Shieh |
author_facet |
Bih-Sheue Shieh Li-yun Lin 林莉芸 |
author |
Li-yun Lin 林莉芸 |
spellingShingle |
Li-yun Lin 林莉芸 The Centroids of Trapezoidal Fuzzy Numbers |
author_sort |
Li-yun Lin |
title |
The Centroids of Trapezoidal Fuzzy Numbers |
title_short |
The Centroids of Trapezoidal Fuzzy Numbers |
title_full |
The Centroids of Trapezoidal Fuzzy Numbers |
title_fullStr |
The Centroids of Trapezoidal Fuzzy Numbers |
title_full_unstemmed |
The Centroids of Trapezoidal Fuzzy Numbers |
title_sort |
centroids of trapezoidal fuzzy numbers |
url |
http://ndltd.ncl.edu.tw/handle/10584383505606151427 |
work_keys_str_mv |
AT liyunlin thecentroidsoftrapezoidalfuzzynumbers AT línlìyún thecentroidsoftrapezoidalfuzzynumbers AT liyunlin tīxíngmóhúshùzhòngxīnzhītàntǎo AT línlìyún tīxíngmóhúshùzhòngxīnzhītàntǎo AT liyunlin centroidsoftrapezoidalfuzzynumbers AT línlìyún centroidsoftrapezoidalfuzzynumbers |
_version_ |
1718134303450202112 |