Optimum Prediction of Electricity Demand Island-Wide in Taiwan Using Genetic-Gray Forecasting Model

碩士 === 國立高雄第一科技大學 === 機械與自動化工程所 === 95 === In this paper, the electricity demand island-wide in Taiwan is predicted by using genetic-gray forecasting model. First, the researcher built the Gray Prediction Model DGM(1,1) to predict limited information. Second, the researcher adjusted the accuracy of...

Full description

Bibliographic Details
Main Authors: Kai-Jung Hsu, 許凱榮
Other Authors: Jyh-Horng Chou
Format: Others
Language:zh-TW
Online Access:http://ndltd.ncl.edu.tw/handle/04461264295225180595
id ndltd-TW-095NKIT5689031
record_format oai_dc
spelling ndltd-TW-095NKIT56890312016-05-20T04:18:04Z http://ndltd.ncl.edu.tw/handle/04461264295225180595 Optimum Prediction of Electricity Demand Island-Wide in Taiwan Using Genetic-Gray Forecasting Model 應用基因灰色預測模型於全台用電量之最佳預測 Kai-Jung Hsu 許凱榮 碩士 國立高雄第一科技大學 機械與自動化工程所 95 In this paper, the electricity demand island-wide in Taiwan is predicted by using genetic-gray forecasting model. First, the researcher built the Gray Prediction Model DGM(1,1) to predict limited information. Second, the researcher adjusted the accuracy of Gray Prediction Model based on Genetic Algorithm. The calculating results were four data and background rate, 0.5669 which can meet the best prediction results. Comparing with other traditional prediction methods, the prediction which applied Mix Gray Prediction and Genetic Algorithm is better then traditional ones. The results of the prediction can provide the government authorities and enterprise with a reference of electricity prediction in the future. Jyh-Horng Chou 周至宏 學位論文 ; thesis 78 zh-TW
collection NDLTD
language zh-TW
format Others
sources NDLTD
description 碩士 === 國立高雄第一科技大學 === 機械與自動化工程所 === 95 === In this paper, the electricity demand island-wide in Taiwan is predicted by using genetic-gray forecasting model. First, the researcher built the Gray Prediction Model DGM(1,1) to predict limited information. Second, the researcher adjusted the accuracy of Gray Prediction Model based on Genetic Algorithm. The calculating results were four data and background rate, 0.5669 which can meet the best prediction results. Comparing with other traditional prediction methods, the prediction which applied Mix Gray Prediction and Genetic Algorithm is better then traditional ones. The results of the prediction can provide the government authorities and enterprise with a reference of electricity prediction in the future.
author2 Jyh-Horng Chou
author_facet Jyh-Horng Chou
Kai-Jung Hsu
許凱榮
author Kai-Jung Hsu
許凱榮
spellingShingle Kai-Jung Hsu
許凱榮
Optimum Prediction of Electricity Demand Island-Wide in Taiwan Using Genetic-Gray Forecasting Model
author_sort Kai-Jung Hsu
title Optimum Prediction of Electricity Demand Island-Wide in Taiwan Using Genetic-Gray Forecasting Model
title_short Optimum Prediction of Electricity Demand Island-Wide in Taiwan Using Genetic-Gray Forecasting Model
title_full Optimum Prediction of Electricity Demand Island-Wide in Taiwan Using Genetic-Gray Forecasting Model
title_fullStr Optimum Prediction of Electricity Demand Island-Wide in Taiwan Using Genetic-Gray Forecasting Model
title_full_unstemmed Optimum Prediction of Electricity Demand Island-Wide in Taiwan Using Genetic-Gray Forecasting Model
title_sort optimum prediction of electricity demand island-wide in taiwan using genetic-gray forecasting model
url http://ndltd.ncl.edu.tw/handle/04461264295225180595
work_keys_str_mv AT kaijunghsu optimumpredictionofelectricitydemandislandwideintaiwanusinggeneticgrayforecastingmodel
AT xǔkǎiróng optimumpredictionofelectricitydemandislandwideintaiwanusinggeneticgrayforecastingmodel
AT kaijunghsu yīngyòngjīyīnhuīsèyùcèmóxíngyúquántáiyòngdiànliàngzhīzuìjiāyùcè
AT xǔkǎiróng yīngyòngjīyīnhuīsèyùcèmóxíngyúquántáiyòngdiànliàngzhīzuìjiāyùcè
_version_ 1718273639820820480