Investigation on RC Moment-Resisting Frames by means of Truss Model Analysis

碩士 === 國立中央大學 === 土木工程研究所 === 95 === The research has been cooperated with Professor Niwa and Dr. Miki from Tokyo Institute of Technology in Japan since March 2006. The target of the research is to examine the analytical ability of the computed program, 3D Lattice model, developed by Niwa group, and...

Full description

Bibliographic Details
Main Authors: Kai Hsu, 徐鍇
Other Authors: 王勇智
Format: Others
Language:zh-TW
Published: 2007
Online Access:http://ndltd.ncl.edu.tw/handle/78592529288003820157
Description
Summary:碩士 === 國立中央大學 === 土木工程研究所 === 95 === The research has been cooperated with Professor Niwa and Dr. Miki from Tokyo Institute of Technology in Japan since March 2006. The target of the research is to examine the analytical ability of the computed program, 3D Lattice model, developed by Niwa group, and to verify the prediction accuracy of moment-resisting frames by means of a series of experimental results. The main structure of 3D lattice model program was made in association with the calculation method of structural matrix analysis to calculate the framing forces and displacements subjected to both monotonic and cyclic loading. Originally, the lattice model was used to predict the seismic behaviors of bridge piers. In order to predict the behavior of RC moment-resisting frames, the original program must be modified. Such as multi concrete models, concrete soften coefficient, stiffness degradation in simulating beam-column joint part, etc. were considered. The modified analytical program was verified by using four tested frames with different failure modes and two story-two bay reinforced concrete moment-resisting frame. The predicted results using the modified program correlated overall framing response well. The results of the detail analysis on shear deformations of columns and beam-column joints also agreed with testing measurements well. It represents the refined analytical program simulates the behavior of RC moment-resisting frame in a feasible way. However, the research still has some issues need to be discussed. Such as the predicted initial stiffness of the structures is higher than experimental result, the simulation of stiffness degradation in beam-column joints, and the angle limit of arch members, should be discussed in the future.