Particle Swarm Optimization for Pattern Detection and Seismic Applications

碩士 === 國立交通大學 === 多媒體工程研究所 === 95 === Particle Swarm Optimization (PSO) is adopted to detect parameter pattern (e.g. circle, ellipse, hyperbola and asymptote.) Each particle is represented as parameters of patterns, then swarm of particles search the optimal solution in parameter space. We define ma...

Full description

Bibliographic Details
Main Authors: An-Ching Tung, 董安晉
Other Authors: Kuo-Yuan Huang
Format: Others
Language:zh-TW
Published: 2007
Online Access:http://ndltd.ncl.edu.tw/handle/30834450966114442759
id ndltd-TW-095NCTU5641027
record_format oai_dc
spelling ndltd-TW-095NCTU56410272016-05-04T04:16:29Z http://ndltd.ncl.edu.tw/handle/30834450966114442759 Particle Swarm Optimization for Pattern Detection and Seismic Applications 粒子群演算法於圖形偵測與震測圖形識別之應用 An-Ching Tung 董安晉 碩士 國立交通大學 多媒體工程研究所 95 Particle Swarm Optimization (PSO) is adopted to detect parameter pattern (e.g. circle, ellipse, hyperbola and asymptote.) Each particle is represented as parameters of patterns, then swarm of particles search the optimal solution in parameter space. We define mathematical formulas to represent various kinds of parameter patterns, and define the distance from points to patterns. Experiments on simulated image get good detection. The method is also applied to detect the parameters of direct wave (line) and reflected wave pattern (hyperbola) in simulated and real one-shot seismogram, the results can improve seismic interpretation and further seismic data processing. Kuo-Yuan Huang 黃國源 2007 學位論文 ; thesis 61 zh-TW
collection NDLTD
language zh-TW
format Others
sources NDLTD
description 碩士 === 國立交通大學 === 多媒體工程研究所 === 95 === Particle Swarm Optimization (PSO) is adopted to detect parameter pattern (e.g. circle, ellipse, hyperbola and asymptote.) Each particle is represented as parameters of patterns, then swarm of particles search the optimal solution in parameter space. We define mathematical formulas to represent various kinds of parameter patterns, and define the distance from points to patterns. Experiments on simulated image get good detection. The method is also applied to detect the parameters of direct wave (line) and reflected wave pattern (hyperbola) in simulated and real one-shot seismogram, the results can improve seismic interpretation and further seismic data processing.
author2 Kuo-Yuan Huang
author_facet Kuo-Yuan Huang
An-Ching Tung
董安晉
author An-Ching Tung
董安晉
spellingShingle An-Ching Tung
董安晉
Particle Swarm Optimization for Pattern Detection and Seismic Applications
author_sort An-Ching Tung
title Particle Swarm Optimization for Pattern Detection and Seismic Applications
title_short Particle Swarm Optimization for Pattern Detection and Seismic Applications
title_full Particle Swarm Optimization for Pattern Detection and Seismic Applications
title_fullStr Particle Swarm Optimization for Pattern Detection and Seismic Applications
title_full_unstemmed Particle Swarm Optimization for Pattern Detection and Seismic Applications
title_sort particle swarm optimization for pattern detection and seismic applications
publishDate 2007
url http://ndltd.ncl.edu.tw/handle/30834450966114442759
work_keys_str_mv AT anchingtung particleswarmoptimizationforpatterndetectionandseismicapplications
AT dǒngānjìn particleswarmoptimizationforpatterndetectionandseismicapplications
AT anchingtung lìziqúnyǎnsuànfǎyútúxíngzhēncèyǔzhèncètúxíngshíbiézhīyīngyòng
AT dǒngānjìn lìziqúnyǎnsuànfǎyútúxíngzhēncèyǔzhèncètúxíngshíbiézhīyīngyòng
_version_ 1718255199720570880