Particle Swarm Optimization for Pattern Detection and Seismic Applications
碩士 === 國立交通大學 === 多媒體工程研究所 === 95 === Particle Swarm Optimization (PSO) is adopted to detect parameter pattern (e.g. circle, ellipse, hyperbola and asymptote.) Each particle is represented as parameters of patterns, then swarm of particles search the optimal solution in parameter space. We define ma...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | zh-TW |
Published: |
2007
|
Online Access: | http://ndltd.ncl.edu.tw/handle/30834450966114442759 |
id |
ndltd-TW-095NCTU5641027 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-095NCTU56410272016-05-04T04:16:29Z http://ndltd.ncl.edu.tw/handle/30834450966114442759 Particle Swarm Optimization for Pattern Detection and Seismic Applications 粒子群演算法於圖形偵測與震測圖形識別之應用 An-Ching Tung 董安晉 碩士 國立交通大學 多媒體工程研究所 95 Particle Swarm Optimization (PSO) is adopted to detect parameter pattern (e.g. circle, ellipse, hyperbola and asymptote.) Each particle is represented as parameters of patterns, then swarm of particles search the optimal solution in parameter space. We define mathematical formulas to represent various kinds of parameter patterns, and define the distance from points to patterns. Experiments on simulated image get good detection. The method is also applied to detect the parameters of direct wave (line) and reflected wave pattern (hyperbola) in simulated and real one-shot seismogram, the results can improve seismic interpretation and further seismic data processing. Kuo-Yuan Huang 黃國源 2007 學位論文 ; thesis 61 zh-TW |
collection |
NDLTD |
language |
zh-TW |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 國立交通大學 === 多媒體工程研究所 === 95 === Particle Swarm Optimization (PSO) is adopted to detect parameter pattern (e.g. circle, ellipse, hyperbola and asymptote.) Each particle is represented as parameters of patterns, then swarm of particles search the optimal solution in parameter space. We define mathematical formulas to represent various kinds of parameter patterns, and define the distance from points to patterns. Experiments on simulated image get good detection. The method is also applied to detect the parameters of direct wave (line) and reflected wave pattern (hyperbola) in simulated and real one-shot seismogram, the results can improve seismic interpretation and further seismic data processing.
|
author2 |
Kuo-Yuan Huang |
author_facet |
Kuo-Yuan Huang An-Ching Tung 董安晉 |
author |
An-Ching Tung 董安晉 |
spellingShingle |
An-Ching Tung 董安晉 Particle Swarm Optimization for Pattern Detection and Seismic Applications |
author_sort |
An-Ching Tung |
title |
Particle Swarm Optimization for Pattern Detection and Seismic Applications |
title_short |
Particle Swarm Optimization for Pattern Detection and Seismic Applications |
title_full |
Particle Swarm Optimization for Pattern Detection and Seismic Applications |
title_fullStr |
Particle Swarm Optimization for Pattern Detection and Seismic Applications |
title_full_unstemmed |
Particle Swarm Optimization for Pattern Detection and Seismic Applications |
title_sort |
particle swarm optimization for pattern detection and seismic applications |
publishDate |
2007 |
url |
http://ndltd.ncl.edu.tw/handle/30834450966114442759 |
work_keys_str_mv |
AT anchingtung particleswarmoptimizationforpatterndetectionandseismicapplications AT dǒngānjìn particleswarmoptimizationforpatterndetectionandseismicapplications AT anchingtung lìziqúnyǎnsuànfǎyútúxíngzhēncèyǔzhèncètúxíngshíbiézhīyīngyòng AT dǒngānjìn lìziqúnyǎnsuànfǎyútúxíngzhēncèyǔzhèncètúxíngshíbiézhīyīngyòng |
_version_ |
1718255199720570880 |