Particle Swarm Optimization for Pattern Detection and Seismic Applications

碩士 === 國立交通大學 === 多媒體工程研究所 === 95 === Particle Swarm Optimization (PSO) is adopted to detect parameter pattern (e.g. circle, ellipse, hyperbola and asymptote.) Each particle is represented as parameters of patterns, then swarm of particles search the optimal solution in parameter space. We define ma...

Full description

Bibliographic Details
Main Authors: An-Ching Tung, 董安晉
Other Authors: Kuo-Yuan Huang
Format: Others
Language:zh-TW
Published: 2007
Online Access:http://ndltd.ncl.edu.tw/handle/30834450966114442759
Description
Summary:碩士 === 國立交通大學 === 多媒體工程研究所 === 95 === Particle Swarm Optimization (PSO) is adopted to detect parameter pattern (e.g. circle, ellipse, hyperbola and asymptote.) Each particle is represented as parameters of patterns, then swarm of particles search the optimal solution in parameter space. We define mathematical formulas to represent various kinds of parameter patterns, and define the distance from points to patterns. Experiments on simulated image get good detection. The method is also applied to detect the parameters of direct wave (line) and reflected wave pattern (hyperbola) in simulated and real one-shot seismogram, the results can improve seismic interpretation and further seismic data processing.