Parameter Estimation for Latent Class Models via K-means and Hierarchical Procedures
碩士 === 國立交通大學 === 統計學研究所 === 95 === The aim of the study is to estimate the parameters of the latent class models via clustering methods. We use k-means and hierarchical ideas of clustering methods with the correlation (or covariance) among items as the distance measure to group objects such that, f...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Language: | en_US |
Published: |
2007
|
Online Access: | http://ndltd.ncl.edu.tw/handle/96260380305817809778 |
id |
ndltd-TW-095NCTU5337020 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-095NCTU53370202015-10-13T16:13:48Z http://ndltd.ncl.edu.tw/handle/96260380305817809778 Parameter Estimation for Latent Class Models via K-means and Hierarchical Procedures 藉由K均值分群與階層式分群程序對潛在群體分析做參數估計 王素梅 碩士 國立交通大學 統計學研究所 95 The aim of the study is to estimate the parameters of the latent class models via clustering methods. We use k-means and hierarchical ideas of clustering methods with the correlation (or covariance) among items as the distance measure to group objects such that, for all objects who belong to the same latent class, items are ”independent”. By viewing the estimated latent class as known variable, it becomes easy to estimate the parameters in the regression extension of latent class analysis (RLCA) model. The results of our simulation study display that the k-means method with the correlation (or covariance) measurement performed well, but the hierarchical method with the covariance measurement didn’t perform well. 黃冠華 2007 學位論文 ; thesis 72 en_US |
collection |
NDLTD |
language |
en_US |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 國立交通大學 === 統計學研究所 === 95 === The aim of the study is to estimate the parameters of the latent class models via clustering methods. We use k-means and hierarchical ideas of clustering methods with the correlation (or covariance) among items as the distance measure to group objects such that, for all objects who belong to the same latent class, items are ”independent”.
By viewing the estimated latent class as known variable, it becomes easy to estimate the parameters in the regression extension of latent class analysis (RLCA) model. The results of our simulation study display that the k-means method with the correlation (or covariance) measurement performed well, but the hierarchical method with the
covariance measurement didn’t perform well.
|
author2 |
黃冠華 |
author_facet |
黃冠華 王素梅 |
author |
王素梅 |
spellingShingle |
王素梅 Parameter Estimation for Latent Class Models via K-means and Hierarchical Procedures |
author_sort |
王素梅 |
title |
Parameter Estimation for Latent Class Models via K-means and Hierarchical Procedures |
title_short |
Parameter Estimation for Latent Class Models via K-means and Hierarchical Procedures |
title_full |
Parameter Estimation for Latent Class Models via K-means and Hierarchical Procedures |
title_fullStr |
Parameter Estimation for Latent Class Models via K-means and Hierarchical Procedures |
title_full_unstemmed |
Parameter Estimation for Latent Class Models via K-means and Hierarchical Procedures |
title_sort |
parameter estimation for latent class models via k-means and hierarchical procedures |
publishDate |
2007 |
url |
http://ndltd.ncl.edu.tw/handle/96260380305817809778 |
work_keys_str_mv |
AT wángsùméi parameterestimationforlatentclassmodelsviakmeansandhierarchicalprocedures AT wángsùméi jíyóukjūnzhífēnqúnyǔjiēcéngshìfēnqúnchéngxùduìqiánzàiqúntǐfēnxīzuòcānshùgūjì |
_version_ |
1717770088220721152 |