Parameter Estimation for Latent Class Models via K-means and Hierarchical Procedures

碩士 === 國立交通大學 === 統計學研究所 === 95 === The aim of the study is to estimate the parameters of the latent class models via clustering methods. We use k-means and hierarchical ideas of clustering methods with the correlation (or covariance) among items as the distance measure to group objects such that, f...

Full description

Bibliographic Details
Main Author: 王素梅
Other Authors: 黃冠華
Format: Others
Language:en_US
Published: 2007
Online Access:http://ndltd.ncl.edu.tw/handle/96260380305817809778
id ndltd-TW-095NCTU5337020
record_format oai_dc
spelling ndltd-TW-095NCTU53370202015-10-13T16:13:48Z http://ndltd.ncl.edu.tw/handle/96260380305817809778 Parameter Estimation for Latent Class Models via K-means and Hierarchical Procedures 藉由K均值分群與階層式分群程序對潛在群體分析做參數估計 王素梅 碩士 國立交通大學 統計學研究所 95 The aim of the study is to estimate the parameters of the latent class models via clustering methods. We use k-means and hierarchical ideas of clustering methods with the correlation (or covariance) among items as the distance measure to group objects such that, for all objects who belong to the same latent class, items are ”independent”. By viewing the estimated latent class as known variable, it becomes easy to estimate the parameters in the regression extension of latent class analysis (RLCA) model. The results of our simulation study display that the k-means method with the correlation (or covariance) measurement performed well, but the hierarchical method with the covariance measurement didn’t perform well. 黃冠華 2007 學位論文 ; thesis 72 en_US
collection NDLTD
language en_US
format Others
sources NDLTD
description 碩士 === 國立交通大學 === 統計學研究所 === 95 === The aim of the study is to estimate the parameters of the latent class models via clustering methods. We use k-means and hierarchical ideas of clustering methods with the correlation (or covariance) among items as the distance measure to group objects such that, for all objects who belong to the same latent class, items are ”independent”. By viewing the estimated latent class as known variable, it becomes easy to estimate the parameters in the regression extension of latent class analysis (RLCA) model. The results of our simulation study display that the k-means method with the correlation (or covariance) measurement performed well, but the hierarchical method with the covariance measurement didn’t perform well.
author2 黃冠華
author_facet 黃冠華
王素梅
author 王素梅
spellingShingle 王素梅
Parameter Estimation for Latent Class Models via K-means and Hierarchical Procedures
author_sort 王素梅
title Parameter Estimation for Latent Class Models via K-means and Hierarchical Procedures
title_short Parameter Estimation for Latent Class Models via K-means and Hierarchical Procedures
title_full Parameter Estimation for Latent Class Models via K-means and Hierarchical Procedures
title_fullStr Parameter Estimation for Latent Class Models via K-means and Hierarchical Procedures
title_full_unstemmed Parameter Estimation for Latent Class Models via K-means and Hierarchical Procedures
title_sort parameter estimation for latent class models via k-means and hierarchical procedures
publishDate 2007
url http://ndltd.ncl.edu.tw/handle/96260380305817809778
work_keys_str_mv AT wángsùméi parameterestimationforlatentclassmodelsviakmeansandhierarchicalprocedures
AT wángsùméi jíyóukjūnzhífēnqúnyǔjiēcéngshìfēnqúnchéngxùduìqiánzàiqúntǐfēnxīzuòcānshùgūjì
_version_ 1717770088220721152