Zero-divisor graphs of higher genus
碩士 === 國立中正大學 === 數學所 === 95 === In this article, we discuss the genus of the zero-divisor graphs associated to a commutative ring and determine which rings $R$ of the form $R_1 imes R_2 imes cdots imes R_n$, where $R_i simeq mathbb{Z}_{p_i^{alpha}}$ or $R_i simeq mathbb{F}_{p_i^{alpha}}$, are of...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | en_US |
Published: |
2007
|
Online Access: | http://ndltd.ncl.edu.tw/handle/72028581341816265999 |
id |
ndltd-TW-095CCU05479009 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-095CCU054790092015-10-13T14:08:36Z http://ndltd.ncl.edu.tw/handle/72028581341816265999 Zero-divisor graphs of higher genus Zero-divisorgraphsofhighergenus Yao-Hsuan Huang 黃耀軒 碩士 國立中正大學 數學所 95 In this article, we discuss the genus of the zero-divisor graphs associated to a commutative ring and determine which rings $R$ of the form $R_1 imes R_2 imes cdots imes R_n$, where $R_i simeq mathbb{Z}_{p_i^{alpha}}$ or $R_i simeq mathbb{F}_{p_i^{alpha}}$, are of genus $gamma(Gamma(R)) = 2$. Hung-Jen Chiang-Hsieh 江謝宏任 2007 學位論文 ; thesis 30 en_US |
collection |
NDLTD |
language |
en_US |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 國立中正大學 === 數學所 === 95 === In this article, we discuss the genus of the zero-divisor graphs associated to a commutative ring and determine which rings $R$ of the form $R_1 imes R_2 imes cdots imes R_n$, where $R_i simeq
mathbb{Z}_{p_i^{alpha}}$ or $R_i simeq
mathbb{F}_{p_i^{alpha}}$, are of genus $gamma(Gamma(R)) = 2$.
|
author2 |
Hung-Jen Chiang-Hsieh |
author_facet |
Hung-Jen Chiang-Hsieh Yao-Hsuan Huang 黃耀軒 |
author |
Yao-Hsuan Huang 黃耀軒 |
spellingShingle |
Yao-Hsuan Huang 黃耀軒 Zero-divisor graphs of higher genus |
author_sort |
Yao-Hsuan Huang |
title |
Zero-divisor graphs of higher genus |
title_short |
Zero-divisor graphs of higher genus |
title_full |
Zero-divisor graphs of higher genus |
title_fullStr |
Zero-divisor graphs of higher genus |
title_full_unstemmed |
Zero-divisor graphs of higher genus |
title_sort |
zero-divisor graphs of higher genus |
publishDate |
2007 |
url |
http://ndltd.ncl.edu.tw/handle/72028581341816265999 |
work_keys_str_mv |
AT yaohsuanhuang zerodivisorgraphsofhighergenus AT huángyàoxuān zerodivisorgraphsofhighergenus |
_version_ |
1717748887328915456 |