建構整合型基因演算法最佳化主動運補路線建構整合型基因演算法最佳化主動運補路線建構整合型基因演算法最佳化主動運補路線
碩士 === 國防大學中正理工學院 === 兵器系統工程研究所 === 95 === The complexity of resolving vehicle routing problem is a NP-Hard (Non-deterministic Polynomial-time Hard) problem. Accordingly, conventional mathematical programming cannot efficiently applied in resolving VRP as numerous demand points are involved. Many s...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | zh-TW |
Published: |
2007
|
Online Access: | http://ndltd.ncl.edu.tw/handle/53079056025522809288 |
id |
ndltd-TW-095CCIT0157005 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-095CCIT01570052016-05-25T04:14:20Z http://ndltd.ncl.edu.tw/handle/53079056025522809288 建構整合型基因演算法最佳化主動運補路線建構整合型基因演算法最佳化主動運補路線建構整合型基因演算法最佳化主動運補路線 Wei-Mean Wey 魏維勉 碩士 國防大學中正理工學院 兵器系統工程研究所 95 The complexity of resolving vehicle routing problem is a NP-Hard (Non-deterministic Polynomial-time Hard) problem. Accordingly, conventional mathematical programming cannot efficiently applied in resolving VRP as numerous demand points are involved. Many studies utilized the meta-heuristic algorithm to determine a solution approaching the optimal solution. The genetic algorithm (GA) was verified an effective meta-heuristic algorithm. This study developed a hybrid GA model, combining K-mean technology and pure GA to further improve the effectiveness of GA in resolving VRP. A case involving optimization of local active distribution from militarily troops demonstrates the effectiveness of the proposed hybrid GA model. 王春和 2007 學位論文 ; thesis 35 zh-TW |
collection |
NDLTD |
language |
zh-TW |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 國防大學中正理工學院 === 兵器系統工程研究所 === 95 === The complexity of resolving vehicle routing problem is a NP-Hard (Non-deterministic Polynomial-time Hard) problem. Accordingly, conventional mathematical programming cannot efficiently applied in resolving VRP as numerous demand points are involved. Many studies utilized the meta-heuristic algorithm to determine a solution approaching the optimal solution. The genetic algorithm (GA) was verified an effective meta-heuristic algorithm. This study developed a hybrid GA model, combining K-mean technology and pure GA to further improve the effectiveness of GA in resolving VRP. A case involving optimization of local active distribution from militarily troops demonstrates the effectiveness of the proposed hybrid GA model.
|
author2 |
王春和 |
author_facet |
王春和 Wei-Mean Wey 魏維勉 |
author |
Wei-Mean Wey 魏維勉 |
spellingShingle |
Wei-Mean Wey 魏維勉 建構整合型基因演算法最佳化主動運補路線建構整合型基因演算法最佳化主動運補路線建構整合型基因演算法最佳化主動運補路線 |
author_sort |
Wei-Mean Wey |
title |
建構整合型基因演算法最佳化主動運補路線建構整合型基因演算法最佳化主動運補路線建構整合型基因演算法最佳化主動運補路線 |
title_short |
建構整合型基因演算法最佳化主動運補路線建構整合型基因演算法最佳化主動運補路線建構整合型基因演算法最佳化主動運補路線 |
title_full |
建構整合型基因演算法最佳化主動運補路線建構整合型基因演算法最佳化主動運補路線建構整合型基因演算法最佳化主動運補路線 |
title_fullStr |
建構整合型基因演算法最佳化主動運補路線建構整合型基因演算法最佳化主動運補路線建構整合型基因演算法最佳化主動運補路線 |
title_full_unstemmed |
建構整合型基因演算法最佳化主動運補路線建構整合型基因演算法最佳化主動運補路線建構整合型基因演算法最佳化主動運補路線 |
title_sort |
建構整合型基因演算法最佳化主動運補路線建構整合型基因演算法最佳化主動運補路線建構整合型基因演算法最佳化主動運補路線 |
publishDate |
2007 |
url |
http://ndltd.ncl.edu.tw/handle/53079056025522809288 |
work_keys_str_mv |
AT weimeanwey jiàngòuzhěnghéxíngjīyīnyǎnsuànfǎzuìjiāhuàzhǔdòngyùnbǔlùxiànjiàngòuzhěnghéxíngjīyīnyǎnsuànfǎzuìjiāhuàzhǔdòngyùnbǔlùxiànjiàngòuzhěnghéxíngjīyīnyǎnsuànfǎzuìjiāhuàzhǔdòngyùnbǔlùxiàn AT wèiwéimiǎn jiàngòuzhěnghéxíngjīyīnyǎnsuànfǎzuìjiāhuàzhǔdòngyùnbǔlùxiànjiàngòuzhěnghéxíngjīyīnyǎnsuànfǎzuìjiāhuàzhǔdòngyùnbǔlùxiànjiàngòuzhěnghéxíngjīyīnyǎnsuànfǎzuìjiāhuàzhǔdòngyùnbǔlùxiàn |
_version_ |
1718280420678696960 |