A STUDY ON SEMILINEAR INTEGRO-DIFFERENTIAL PROBLEMS WITH NONLOCAL BOUNDARY CONDITIONS.
碩士 === 大同大學 === 應用數學學系(所) === 94 === centerline{Large Abstract} aselineskip=1.5 aselineskip vspace{24pt} large Let $T$, $p$ be positive constants with $pgeqslant 1$, $Omega$ be a smooth bounded domain in $Bbb{R}^n$, $partial Omega $ be the boundary of $Omega$, and $Delta$ be the Laplacian. This...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | en_US |
Published: |
2006
|
Online Access: | http://ndltd.ncl.edu.tw/handle/49586892784817651291 |
id |
ndltd-TW-094TTU00507004 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-094TTU005070042015-10-13T10:37:50Z http://ndltd.ncl.edu.tw/handle/49586892784817651291 A STUDY ON SEMILINEAR INTEGRO-DIFFERENTIAL PROBLEMS WITH NONLOCAL BOUNDARY CONDITIONS. 半線性非局部邊界條件積微分問題之研究 Sheng-Hung Chen 陳聖鴻 碩士 大同大學 應用數學學系(所) 94 centerline{Large Abstract} aselineskip=1.5 aselineskip vspace{24pt} large Let $T$, $p$ be positive constants with $pgeqslant 1$, $Omega$ be a smooth bounded domain in $Bbb{R}^n$, $partial Omega $ be the boundary of $Omega$, and $Delta$ be the Laplacian. This paper studies the semilinear parabolic integro-differential problems with nonlocal boundary condition: egin{align*} u_t(t,x)-Delta u(t,x) &= left(int^{t}_{0}mid u(s,x)mid ^{p}ds ight) u(t,x) in (0,T) imes Omega, otag Bu(t,x) &= int_{Omega}K(x,y)u(t,y)dy in (0,T) imes partial Omega, u(0,x) &= u_{0}(x), xin Omega, otag & end{align*} where $K(x,y)$ and $u_{0}(x)$ are nonnegative continuous functions on $Omegacup partial Omega$, and $B$ is the boundary operator egin{equation*} Buequiv alpha_{0} rac{partial u}{partial u}+u, end{equation*} with $alpha_0geqslant 0$, and $D rac{partial u}{partial u }$ denotes the outward normal derivative of $u$ on $partialOmega $. The local existence and uniqueness of the solution are investigated. Blow-up criteria for the problem is given. Hon-hung Terence Liu 廖漢雄 2006 學位論文 ; thesis 40 en_US |
collection |
NDLTD |
language |
en_US |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 大同大學 === 應用數學學系(所) === 94 === centerline{Large Abstract} aselineskip=1.5 aselineskip
vspace{24pt} large Let $T$, $p$ be positive constants with
$pgeqslant 1$, $Omega$ be a smooth bounded domain in
$Bbb{R}^n$, $partial Omega $ be the boundary of $Omega$, and
$Delta$ be the Laplacian. This paper studies the semilinear
parabolic integro-differential problems with nonlocal boundary
condition:
egin{align*}
u_t(t,x)-Delta u(t,x) &= left(int^{t}_{0}mid u(s,x)mid ^{p}ds
ight) u(t,x) in (0,T) imes Omega,
otag
Bu(t,x) &= int_{Omega}K(x,y)u(t,y)dy in (0,T) imes partial Omega,
u(0,x) &= u_{0}(x), xin Omega,
otag
&
end{align*}
where $K(x,y)$ and $u_{0}(x)$ are nonnegative continuous functions
on $Omegacup partial Omega$, and $B$ is the boundary operator
egin{equation*}
Buequiv alpha_{0} rac{partial u}{partial
u}+u,
end{equation*}
with $alpha_0geqslant 0$, and $D rac{partial u}{partial
u }$
denotes the outward normal derivative of $u$ on $partialOmega $.
The local existence and uniqueness of the solution are
investigated. Blow-up criteria for the problem is given.
|
author2 |
Hon-hung Terence Liu |
author_facet |
Hon-hung Terence Liu Sheng-Hung Chen 陳聖鴻 |
author |
Sheng-Hung Chen 陳聖鴻 |
spellingShingle |
Sheng-Hung Chen 陳聖鴻 A STUDY ON SEMILINEAR INTEGRO-DIFFERENTIAL PROBLEMS WITH NONLOCAL BOUNDARY CONDITIONS. |
author_sort |
Sheng-Hung Chen |
title |
A STUDY ON SEMILINEAR INTEGRO-DIFFERENTIAL PROBLEMS WITH NONLOCAL BOUNDARY CONDITIONS. |
title_short |
A STUDY ON SEMILINEAR INTEGRO-DIFFERENTIAL PROBLEMS WITH NONLOCAL BOUNDARY CONDITIONS. |
title_full |
A STUDY ON SEMILINEAR INTEGRO-DIFFERENTIAL PROBLEMS WITH NONLOCAL BOUNDARY CONDITIONS. |
title_fullStr |
A STUDY ON SEMILINEAR INTEGRO-DIFFERENTIAL PROBLEMS WITH NONLOCAL BOUNDARY CONDITIONS. |
title_full_unstemmed |
A STUDY ON SEMILINEAR INTEGRO-DIFFERENTIAL PROBLEMS WITH NONLOCAL BOUNDARY CONDITIONS. |
title_sort |
study on semilinear integro-differential problems with nonlocal boundary conditions. |
publishDate |
2006 |
url |
http://ndltd.ncl.edu.tw/handle/49586892784817651291 |
work_keys_str_mv |
AT shenghungchen astudyonsemilinearintegrodifferentialproblemswithnonlocalboundaryconditions AT chénshènghóng astudyonsemilinearintegrodifferentialproblemswithnonlocalboundaryconditions AT shenghungchen bànxiànxìngfēijúbùbiānjiètiáojiànjīwēifēnwèntízhīyánjiū AT chénshènghóng bànxiànxìngfēijúbùbiānjiètiáojiànjīwēifēnwèntízhīyánjiū AT shenghungchen studyonsemilinearintegrodifferentialproblemswithnonlocalboundaryconditions AT chénshènghóng studyonsemilinearintegrodifferentialproblemswithnonlocalboundaryconditions |
_version_ |
1716831880804827136 |