A STUDY ON SEMILINEAR INTEGRO-DIFFERENTIAL PROBLEMS WITH NONLOCAL BOUNDARY CONDITIONS.

碩士 === 大同大學 === 應用數學學系(所) === 94 === centerline{Large Abstract} aselineskip=1.5 aselineskip vspace{24pt} large Let $T$, $p$ be positive constants with $pgeqslant 1$, $Omega$ be a smooth bounded domain in $Bbb{R}^n$, $partial Omega $ be the boundary of $Omega$, and $Delta$ be the Laplacian. This...

Full description

Bibliographic Details
Main Authors: Sheng-Hung Chen, 陳聖鴻
Other Authors: Hon-hung Terence Liu
Format: Others
Language:en_US
Published: 2006
Online Access:http://ndltd.ncl.edu.tw/handle/49586892784817651291
id ndltd-TW-094TTU00507004
record_format oai_dc
spelling ndltd-TW-094TTU005070042015-10-13T10:37:50Z http://ndltd.ncl.edu.tw/handle/49586892784817651291 A STUDY ON SEMILINEAR INTEGRO-DIFFERENTIAL PROBLEMS WITH NONLOCAL BOUNDARY CONDITIONS. 半線性非局部邊界條件積微分問題之研究 Sheng-Hung Chen 陳聖鴻 碩士 大同大學 應用數學學系(所) 94 centerline{Large Abstract} aselineskip=1.5 aselineskip vspace{24pt} large Let $T$, $p$ be positive constants with $pgeqslant 1$, $Omega$ be a smooth bounded domain in $Bbb{R}^n$, $partial Omega $ be the boundary of $Omega$, and $Delta$ be the Laplacian. This paper studies the semilinear parabolic integro-differential problems with nonlocal boundary condition: egin{align*} u_t(t,x)-Delta u(t,x) &= left(int^{t}_{0}mid u(s,x)mid ^{p}ds ight) u(t,x) in (0,T) imes Omega, otag Bu(t,x) &= int_{Omega}K(x,y)u(t,y)dy in (0,T) imes partial Omega, u(0,x) &= u_{0}(x), xin Omega, otag & end{align*} where $K(x,y)$ and $u_{0}(x)$ are nonnegative continuous functions on $Omegacup partial Omega$, and $B$ is the boundary operator egin{equation*} Buequiv alpha_{0} rac{partial u}{partial u}+u, end{equation*} with $alpha_0geqslant 0$, and $D rac{partial u}{partial u }$ denotes the outward normal derivative of $u$ on $partialOmega $. The local existence and uniqueness of the solution are investigated. Blow-up criteria for the problem is given. Hon-hung Terence Liu 廖漢雄 2006 學位論文 ; thesis 40 en_US
collection NDLTD
language en_US
format Others
sources NDLTD
description 碩士 === 大同大學 === 應用數學學系(所) === 94 === centerline{Large Abstract} aselineskip=1.5 aselineskip vspace{24pt} large Let $T$, $p$ be positive constants with $pgeqslant 1$, $Omega$ be a smooth bounded domain in $Bbb{R}^n$, $partial Omega $ be the boundary of $Omega$, and $Delta$ be the Laplacian. This paper studies the semilinear parabolic integro-differential problems with nonlocal boundary condition: egin{align*} u_t(t,x)-Delta u(t,x) &= left(int^{t}_{0}mid u(s,x)mid ^{p}ds ight) u(t,x) in (0,T) imes Omega, otag Bu(t,x) &= int_{Omega}K(x,y)u(t,y)dy in (0,T) imes partial Omega, u(0,x) &= u_{0}(x), xin Omega, otag & end{align*} where $K(x,y)$ and $u_{0}(x)$ are nonnegative continuous functions on $Omegacup partial Omega$, and $B$ is the boundary operator egin{equation*} Buequiv alpha_{0} rac{partial u}{partial u}+u, end{equation*} with $alpha_0geqslant 0$, and $D rac{partial u}{partial u }$ denotes the outward normal derivative of $u$ on $partialOmega $. The local existence and uniqueness of the solution are investigated. Blow-up criteria for the problem is given.
author2 Hon-hung Terence Liu
author_facet Hon-hung Terence Liu
Sheng-Hung Chen
陳聖鴻
author Sheng-Hung Chen
陳聖鴻
spellingShingle Sheng-Hung Chen
陳聖鴻
A STUDY ON SEMILINEAR INTEGRO-DIFFERENTIAL PROBLEMS WITH NONLOCAL BOUNDARY CONDITIONS.
author_sort Sheng-Hung Chen
title A STUDY ON SEMILINEAR INTEGRO-DIFFERENTIAL PROBLEMS WITH NONLOCAL BOUNDARY CONDITIONS.
title_short A STUDY ON SEMILINEAR INTEGRO-DIFFERENTIAL PROBLEMS WITH NONLOCAL BOUNDARY CONDITIONS.
title_full A STUDY ON SEMILINEAR INTEGRO-DIFFERENTIAL PROBLEMS WITH NONLOCAL BOUNDARY CONDITIONS.
title_fullStr A STUDY ON SEMILINEAR INTEGRO-DIFFERENTIAL PROBLEMS WITH NONLOCAL BOUNDARY CONDITIONS.
title_full_unstemmed A STUDY ON SEMILINEAR INTEGRO-DIFFERENTIAL PROBLEMS WITH NONLOCAL BOUNDARY CONDITIONS.
title_sort study on semilinear integro-differential problems with nonlocal boundary conditions.
publishDate 2006
url http://ndltd.ncl.edu.tw/handle/49586892784817651291
work_keys_str_mv AT shenghungchen astudyonsemilinearintegrodifferentialproblemswithnonlocalboundaryconditions
AT chénshènghóng astudyonsemilinearintegrodifferentialproblemswithnonlocalboundaryconditions
AT shenghungchen bànxiànxìngfēijúbùbiānjiètiáojiànjīwēifēnwèntízhīyánjiū
AT chénshènghóng bànxiànxìngfēijúbùbiānjiètiáojiànjīwēifēnwèntízhīyánjiū
AT shenghungchen studyonsemilinearintegrodifferentialproblemswithnonlocalboundaryconditions
AT chénshènghóng studyonsemilinearintegrodifferentialproblemswithnonlocalboundaryconditions
_version_ 1716831880804827136