Conditional Expectation of White Noise Functionals
碩士 === 國立高雄大學 === 統計學研究所 === 94 === In this paper it is show that the conditional expectation of a white noise functional $\varphi$ given the the Brownian motion $B(t)$ is represented by $$E[\varphi|\mathcal{B}_{t}]=\int_{S^*} \varphi[\Theta_tx+(1-\Theta_t)y] \mu(dy)\ ,$$ where $\Theta_t$ is the Hea...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | en_US |
Published: |
2006
|
Online Access: | http://ndltd.ncl.edu.tw/handle/65832047378238199074 |
id |
ndltd-TW-094NUK05337009 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-094NUK053370092016-06-17T04:16:02Z http://ndltd.ncl.edu.tw/handle/65832047378238199074 Conditional Expectation of White Noise Functionals 白雜訊泛函之條件期望值 Yu-Chun Lin 林于鈞 碩士 國立高雄大學 統計學研究所 94 In this paper it is show that the conditional expectation of a white noise functional $\varphi$ given the the Brownian motion $B(t)$ is represented by $$E[\varphi|\mathcal{B}_{t}]=\int_{S^*} \varphi[\Theta_tx+(1-\Theta_t)y] \mu(dy)\ ,$$ where $\Theta_t$ is the Heaviside function $$\Theta_t(s)\equiv \left\{ \begin{array}{ll} \mbox{I}& ,s\leq t ,\cr 0 &,s>t. \end{array}\right.$$ and $\Theta_t$ is the Heaviside operator defined by $\Theta_{t}x(s)=\Theta_{t}(s)x(s)$. Note that the Brownian motion $B(t)$ can be represented by $$B_{t}(x)=\left\{ \begin{array}{rr} \langle x,1_{[0,t]}\rangle & , t\geq 0, x\in S^*(\mathbb{R}^1) ;\cr -\langle x,1_{[t,0]}\rangle & , t< 0, x\in S^*(\mathbb{R}^1). \end{array}\right.$$ If $\{e_{j}:1\leq j\leq n \}$ be an orthonormal set in $L^2(\mathbb{R}^1)$ and $\mathcal{B}_{n}=\sigma \{\langle x,e_{j}\rangle:1\leq j \leq n\}$ and if $P_{n}$ denotes the orthogonal projection of $L^2(\mathbb{R}^1)$ onto the space spanned by $\{e_{j}:1\leq j\leq n \}$, then it is shown that conditional expectation enjoy the integral representation $$E[\varphi|\mathcal{B}_{n}]=\int_{S^*}\varphi[P_{n}x+(1-P_{n})y]\mu(dy)$$ Using the above integral representation we are able to investigate the regularity properties of the conditional expectation and compute the conditional expectation easily. Moreover, we can extend the concept of conditional expectation to generalized white noise functionals. As applications, we give some examples. Yuh-Jia Lee 李育嘉 2006 學位論文 ; thesis 15 en_US |
collection |
NDLTD |
language |
en_US |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 國立高雄大學 === 統計學研究所 === 94 === In this paper it is show that the conditional
expectation of a white noise functional $\varphi$ given the the
Brownian motion $B(t)$ is represented by
$$E[\varphi|\mathcal{B}_{t}]=\int_{S^*}
\varphi[\Theta_tx+(1-\Theta_t)y] \mu(dy)\ ,$$
where $\Theta_t$ is the Heaviside function
$$\Theta_t(s)\equiv \left\{
\begin{array}{ll}
\mbox{I}& ,s\leq t ,\cr 0 &,s>t.
\end{array}\right.$$
and $\Theta_t$ is the Heaviside operator defined by
$\Theta_{t}x(s)=\Theta_{t}(s)x(s)$. Note that the Brownian motion $B(t)$ can be represented by
$$B_{t}(x)=\left\{
\begin{array}{rr}
\langle x,1_{[0,t]}\rangle & , t\geq 0, x\in S^*(\mathbb{R}^1) ;\cr
-\langle x,1_{[t,0]}\rangle & , t< 0, x\in S^*(\mathbb{R}^1).
\end{array}\right.$$
If $\{e_{j}:1\leq j\leq n \}$ be an orthonormal set in
$L^2(\mathbb{R}^1)$ and $\mathcal{B}_{n}=\sigma \{\langle
x,e_{j}\rangle:1\leq j \leq n\}$ and if $P_{n}$ denotes the
orthogonal projection of $L^2(\mathbb{R}^1)$ onto the space spanned
by $\{e_{j}:1\leq j\leq n \}$, then it is shown that conditional
expectation enjoy the integral representation
$$E[\varphi|\mathcal{B}_{n}]=\int_{S^*}\varphi[P_{n}x+(1-P_{n})y]\mu(dy)$$
Using the above integral representation we are able to investigate
the regularity properties of the conditional expectation and compute
the conditional expectation easily. Moreover, we can extend the
concept of conditional expectation to generalized white noise
functionals. As applications, we give some examples.
|
author2 |
Yuh-Jia Lee |
author_facet |
Yuh-Jia Lee Yu-Chun Lin 林于鈞 |
author |
Yu-Chun Lin 林于鈞 |
spellingShingle |
Yu-Chun Lin 林于鈞 Conditional Expectation of White Noise Functionals |
author_sort |
Yu-Chun Lin |
title |
Conditional Expectation of White Noise Functionals |
title_short |
Conditional Expectation of White Noise Functionals |
title_full |
Conditional Expectation of White Noise Functionals |
title_fullStr |
Conditional Expectation of White Noise Functionals |
title_full_unstemmed |
Conditional Expectation of White Noise Functionals |
title_sort |
conditional expectation of white noise functionals |
publishDate |
2006 |
url |
http://ndltd.ncl.edu.tw/handle/65832047378238199074 |
work_keys_str_mv |
AT yuchunlin conditionalexpectationofwhitenoisefunctionals AT línyújūn conditionalexpectationofwhitenoisefunctionals AT yuchunlin báizáxùnfànhánzhītiáojiànqīwàngzhí AT línyújūn báizáxùnfànhánzhītiáojiànqīwàngzhí |
_version_ |
1718307601840603136 |