Conditional Expectation of White Noise Functionals

碩士 === 國立高雄大學 === 統計學研究所 === 94 === In this paper it is show that the conditional expectation of a white noise functional $\varphi$ given the the Brownian motion $B(t)$ is represented by $$E[\varphi|\mathcal{B}_{t}]=\int_{S^*} \varphi[\Theta_tx+(1-\Theta_t)y] \mu(dy)\ ,$$ where $\Theta_t$ is the Hea...

Full description

Bibliographic Details
Main Authors: Yu-Chun Lin, 林于鈞
Other Authors: Yuh-Jia Lee
Format: Others
Language:en_US
Published: 2006
Online Access:http://ndltd.ncl.edu.tw/handle/65832047378238199074
id ndltd-TW-094NUK05337009
record_format oai_dc
spelling ndltd-TW-094NUK053370092016-06-17T04:16:02Z http://ndltd.ncl.edu.tw/handle/65832047378238199074 Conditional Expectation of White Noise Functionals 白雜訊泛函之條件期望值 Yu-Chun Lin 林于鈞 碩士 國立高雄大學 統計學研究所 94 In this paper it is show that the conditional expectation of a white noise functional $\varphi$ given the the Brownian motion $B(t)$ is represented by $$E[\varphi|\mathcal{B}_{t}]=\int_{S^*} \varphi[\Theta_tx+(1-\Theta_t)y] \mu(dy)\ ,$$ where $\Theta_t$ is the Heaviside function $$\Theta_t(s)\equiv \left\{ \begin{array}{ll} \mbox{I}& ,s\leq t ,\cr 0 &,s>t. \end{array}\right.$$ and $\Theta_t$ is the Heaviside operator defined by $\Theta_{t}x(s)=\Theta_{t}(s)x(s)$. Note that the Brownian motion $B(t)$ can be represented by $$B_{t}(x)=\left\{ \begin{array}{rr} \langle x,1_{[0,t]}\rangle & , t\geq 0, x\in S^*(\mathbb{R}^1) ;\cr -\langle x,1_{[t,0]}\rangle & , t< 0, x\in S^*(\mathbb{R}^1). \end{array}\right.$$ If $\{e_{j}:1\leq j\leq n \}$ be an orthonormal set in $L^2(\mathbb{R}^1)$ and $\mathcal{B}_{n}=\sigma \{\langle x,e_{j}\rangle:1\leq j \leq n\}$ and if $P_{n}$ denotes the orthogonal projection of $L^2(\mathbb{R}^1)$ onto the space spanned by $\{e_{j}:1\leq j\leq n \}$, then it is shown that conditional expectation enjoy the integral representation $$E[\varphi|\mathcal{B}_{n}]=\int_{S^*}\varphi[P_{n}x+(1-P_{n})y]\mu(dy)$$ Using the above integral representation we are able to investigate the regularity properties of the conditional expectation and compute the conditional expectation easily. Moreover, we can extend the concept of conditional expectation to generalized white noise functionals. As applications, we give some examples. Yuh-Jia Lee 李育嘉 2006 學位論文 ; thesis 15 en_US
collection NDLTD
language en_US
format Others
sources NDLTD
description 碩士 === 國立高雄大學 === 統計學研究所 === 94 === In this paper it is show that the conditional expectation of a white noise functional $\varphi$ given the the Brownian motion $B(t)$ is represented by $$E[\varphi|\mathcal{B}_{t}]=\int_{S^*} \varphi[\Theta_tx+(1-\Theta_t)y] \mu(dy)\ ,$$ where $\Theta_t$ is the Heaviside function $$\Theta_t(s)\equiv \left\{ \begin{array}{ll} \mbox{I}& ,s\leq t ,\cr 0 &,s>t. \end{array}\right.$$ and $\Theta_t$ is the Heaviside operator defined by $\Theta_{t}x(s)=\Theta_{t}(s)x(s)$. Note that the Brownian motion $B(t)$ can be represented by $$B_{t}(x)=\left\{ \begin{array}{rr} \langle x,1_{[0,t]}\rangle & , t\geq 0, x\in S^*(\mathbb{R}^1) ;\cr -\langle x,1_{[t,0]}\rangle & , t< 0, x\in S^*(\mathbb{R}^1). \end{array}\right.$$ If $\{e_{j}:1\leq j\leq n \}$ be an orthonormal set in $L^2(\mathbb{R}^1)$ and $\mathcal{B}_{n}=\sigma \{\langle x,e_{j}\rangle:1\leq j \leq n\}$ and if $P_{n}$ denotes the orthogonal projection of $L^2(\mathbb{R}^1)$ onto the space spanned by $\{e_{j}:1\leq j\leq n \}$, then it is shown that conditional expectation enjoy the integral representation $$E[\varphi|\mathcal{B}_{n}]=\int_{S^*}\varphi[P_{n}x+(1-P_{n})y]\mu(dy)$$ Using the above integral representation we are able to investigate the regularity properties of the conditional expectation and compute the conditional expectation easily. Moreover, we can extend the concept of conditional expectation to generalized white noise functionals. As applications, we give some examples.
author2 Yuh-Jia Lee
author_facet Yuh-Jia Lee
Yu-Chun Lin
林于鈞
author Yu-Chun Lin
林于鈞
spellingShingle Yu-Chun Lin
林于鈞
Conditional Expectation of White Noise Functionals
author_sort Yu-Chun Lin
title Conditional Expectation of White Noise Functionals
title_short Conditional Expectation of White Noise Functionals
title_full Conditional Expectation of White Noise Functionals
title_fullStr Conditional Expectation of White Noise Functionals
title_full_unstemmed Conditional Expectation of White Noise Functionals
title_sort conditional expectation of white noise functionals
publishDate 2006
url http://ndltd.ncl.edu.tw/handle/65832047378238199074
work_keys_str_mv AT yuchunlin conditionalexpectationofwhitenoisefunctionals
AT línyújūn conditionalexpectationofwhitenoisefunctionals
AT yuchunlin báizáxùnfànhánzhītiáojiànqīwàngzhí
AT línyújūn báizáxùnfànhánzhītiáojiànqīwàngzhí
_version_ 1718307601840603136