Fast searching of optimal solution by genetic algorithm
碩士 === 國立臺灣海洋大學 === 機械與機電工程學系 === 94 === Genetic algorithm is a global searching way for the optimal solution, but it will trapped in the local solution easily. When the searching values approaches the optimal solution, we need change searching step a half, otherwise the update value will far away f...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | zh-TW |
Published: |
2006
|
Online Access: | http://ndltd.ncl.edu.tw/handle/64568573741761304672 |
id |
ndltd-TW-094NTOU5489022 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-094NTOU54890222016-06-01T04:25:08Z http://ndltd.ncl.edu.tw/handle/64568573741761304672 Fast searching of optimal solution by genetic algorithm 以基因演算法快速尋找最佳解 Jyun-Wei Jhuang 莊峻瑋 碩士 國立臺灣海洋大學 機械與機電工程學系 94 Genetic algorithm is a global searching way for the optimal solution, but it will trapped in the local solution easily. When the searching values approaches the optimal solution, we need change searching step a half, otherwise the update value will far away from the optimal solution. In this paper, we presented that when the value approaching the optimal solution, we set all searching parameters at some interval, and then using the chromosome’s arrayal character to search the optimal solution fast. First, the value is encoded by binary and fit N bits from left of the string, and then divided any blocks. After j generations, we will find out the interval of suitable value, and choose the half interval. Then parameter solving interval diminish it, repeat the same steps iterately until it converges to the optimal value solution. The simulation results shown that hybrid general genetic algorithm and interval-reduction genetic algorithm will search fast optimal solution exactly. keywords: genetic algorithm, binary, binomial, optimal solution. 洪瑞鴻 2006 學位論文 ; thesis 62 zh-TW |
collection |
NDLTD |
language |
zh-TW |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 國立臺灣海洋大學 === 機械與機電工程學系 === 94 === Genetic algorithm is a global searching way for the optimal solution, but it will trapped in the local solution easily. When the searching values approaches the optimal solution, we need change searching step a half, otherwise the update value will far away from the optimal solution. In this paper, we presented that when the value approaching the optimal solution, we set all searching parameters at some interval, and then using the chromosome’s arrayal character to search the optimal solution fast. First, the value is encoded by binary and fit N bits from left of the string, and then divided any blocks. After j generations, we will find out the interval of suitable value, and choose the half interval. Then parameter solving interval diminish it, repeat the same steps iterately until it converges to the optimal value solution. The simulation results shown that hybrid general genetic algorithm and interval-reduction genetic algorithm will search fast optimal solution exactly.
keywords: genetic algorithm, binary, binomial, optimal solution.
|
author2 |
洪瑞鴻 |
author_facet |
洪瑞鴻 Jyun-Wei Jhuang 莊峻瑋 |
author |
Jyun-Wei Jhuang 莊峻瑋 |
spellingShingle |
Jyun-Wei Jhuang 莊峻瑋 Fast searching of optimal solution by genetic algorithm |
author_sort |
Jyun-Wei Jhuang |
title |
Fast searching of optimal solution by genetic algorithm |
title_short |
Fast searching of optimal solution by genetic algorithm |
title_full |
Fast searching of optimal solution by genetic algorithm |
title_fullStr |
Fast searching of optimal solution by genetic algorithm |
title_full_unstemmed |
Fast searching of optimal solution by genetic algorithm |
title_sort |
fast searching of optimal solution by genetic algorithm |
publishDate |
2006 |
url |
http://ndltd.ncl.edu.tw/handle/64568573741761304672 |
work_keys_str_mv |
AT jyunweijhuang fastsearchingofoptimalsolutionbygeneticalgorithm AT zhuāngjùnwěi fastsearchingofoptimalsolutionbygeneticalgorithm AT jyunweijhuang yǐjīyīnyǎnsuànfǎkuàisùxúnzhǎozuìjiājiě AT zhuāngjùnwěi yǐjīyīnyǎnsuànfǎkuàisùxúnzhǎozuìjiājiě |
_version_ |
1718291760548937728 |