Fast searching of optimal solution by genetic algorithm

碩士 === 國立臺灣海洋大學 === 機械與機電工程學系 === 94 === Genetic algorithm is a global searching way for the optimal solution, but it will trapped in the local solution easily. When the searching values approaches the optimal solution, we need change searching step a half, otherwise the update value will far away f...

Full description

Bibliographic Details
Main Authors: Jyun-Wei Jhuang, 莊峻瑋
Other Authors: 洪瑞鴻
Format: Others
Language:zh-TW
Published: 2006
Online Access:http://ndltd.ncl.edu.tw/handle/64568573741761304672
id ndltd-TW-094NTOU5489022
record_format oai_dc
spelling ndltd-TW-094NTOU54890222016-06-01T04:25:08Z http://ndltd.ncl.edu.tw/handle/64568573741761304672 Fast searching of optimal solution by genetic algorithm 以基因演算法快速尋找最佳解 Jyun-Wei Jhuang 莊峻瑋 碩士 國立臺灣海洋大學 機械與機電工程學系 94 Genetic algorithm is a global searching way for the optimal solution, but it will trapped in the local solution easily. When the searching values approaches the optimal solution, we need change searching step a half, otherwise the update value will far away from the optimal solution. In this paper, we presented that when the value approaching the optimal solution, we set all searching parameters at some interval, and then using the chromosome’s arrayal character to search the optimal solution fast. First, the value is encoded by binary and fit N bits from left of the string, and then divided any blocks. After j generations, we will find out the interval of suitable value, and choose the half interval. Then parameter solving interval diminish it, repeat the same steps iterately until it converges to the optimal value solution. The simulation results shown that hybrid general genetic algorithm and interval-reduction genetic algorithm will search fast optimal solution exactly. keywords: genetic algorithm, binary, binomial, optimal solution. 洪瑞鴻 2006 學位論文 ; thesis 62 zh-TW
collection NDLTD
language zh-TW
format Others
sources NDLTD
description 碩士 === 國立臺灣海洋大學 === 機械與機電工程學系 === 94 === Genetic algorithm is a global searching way for the optimal solution, but it will trapped in the local solution easily. When the searching values approaches the optimal solution, we need change searching step a half, otherwise the update value will far away from the optimal solution. In this paper, we presented that when the value approaching the optimal solution, we set all searching parameters at some interval, and then using the chromosome’s arrayal character to search the optimal solution fast. First, the value is encoded by binary and fit N bits from left of the string, and then divided any blocks. After j generations, we will find out the interval of suitable value, and choose the half interval. Then parameter solving interval diminish it, repeat the same steps iterately until it converges to the optimal value solution. The simulation results shown that hybrid general genetic algorithm and interval-reduction genetic algorithm will search fast optimal solution exactly. keywords: genetic algorithm, binary, binomial, optimal solution.
author2 洪瑞鴻
author_facet 洪瑞鴻
Jyun-Wei Jhuang
莊峻瑋
author Jyun-Wei Jhuang
莊峻瑋
spellingShingle Jyun-Wei Jhuang
莊峻瑋
Fast searching of optimal solution by genetic algorithm
author_sort Jyun-Wei Jhuang
title Fast searching of optimal solution by genetic algorithm
title_short Fast searching of optimal solution by genetic algorithm
title_full Fast searching of optimal solution by genetic algorithm
title_fullStr Fast searching of optimal solution by genetic algorithm
title_full_unstemmed Fast searching of optimal solution by genetic algorithm
title_sort fast searching of optimal solution by genetic algorithm
publishDate 2006
url http://ndltd.ncl.edu.tw/handle/64568573741761304672
work_keys_str_mv AT jyunweijhuang fastsearchingofoptimalsolutionbygeneticalgorithm
AT zhuāngjùnwěi fastsearchingofoptimalsolutionbygeneticalgorithm
AT jyunweijhuang yǐjīyīnyǎnsuànfǎkuàisùxúnzhǎozuìjiājiě
AT zhuāngjùnwěi yǐjīyīnyǎnsuànfǎkuàisùxúnzhǎozuìjiājiě
_version_ 1718291760548937728