The nature of spectrum for some singular Sturm-Liouville operators

碩士 === 國立中山大學 === 應用數學系研究所 === 94 === We give a report on the Sturm-Liouville problem defined on semi-infinite interval. Here as an extension of the Fourier expansion, we have a Parseval equality involving a Fourier integral with respect to a spectral function rho. This function rho is also related...

Full description

Bibliographic Details
Main Authors: Shuo-Chi Lee, 李碩祈
Other Authors: Chun-Kong Law
Format: Others
Language:en_US
Published: 2006
Online Access:http://ndltd.ncl.edu.tw/handle/07897585388516090550
id ndltd-TW-094NSYS5507030
record_format oai_dc
spelling ndltd-TW-094NSYS55070302016-05-27T04:18:09Z http://ndltd.ncl.edu.tw/handle/07897585388516090550 The nature of spectrum for some singular Sturm-Liouville operators 一些奇異Sturm-Liouville算子的譜的結構 Shuo-Chi Lee 李碩祈 碩士 國立中山大學 應用數學系研究所 94 We give a report on the Sturm-Liouville problem defined on semi-infinite interval. Here as an extension of the Fourier expansion, we have a Parseval equality involving a Fourier integral with respect to a spectral function rho. This function rho is also related to Titchmarsh-Weyl m-function m(lambda) giving L2 solutions of the problem. The spectrum can be viewed as nonconstant points of the spectral function. Following Titchmarsh’s monograph, we shall investigate the nature of the spectrum associated with different asymptotic behaviors of the potential function q, namely, when q→∞, q→0 or q→-∞. Chun-Kong Law 羅春光 2006 學位論文 ; thesis 56 en_US
collection NDLTD
language en_US
format Others
sources NDLTD
description 碩士 === 國立中山大學 === 應用數學系研究所 === 94 === We give a report on the Sturm-Liouville problem defined on semi-infinite interval. Here as an extension of the Fourier expansion, we have a Parseval equality involving a Fourier integral with respect to a spectral function rho. This function rho is also related to Titchmarsh-Weyl m-function m(lambda) giving L2 solutions of the problem. The spectrum can be viewed as nonconstant points of the spectral function. Following Titchmarsh’s monograph, we shall investigate the nature of the spectrum associated with different asymptotic behaviors of the potential function q, namely, when q→∞, q→0 or q→-∞.
author2 Chun-Kong Law
author_facet Chun-Kong Law
Shuo-Chi Lee
李碩祈
author Shuo-Chi Lee
李碩祈
spellingShingle Shuo-Chi Lee
李碩祈
The nature of spectrum for some singular Sturm-Liouville operators
author_sort Shuo-Chi Lee
title The nature of spectrum for some singular Sturm-Liouville operators
title_short The nature of spectrum for some singular Sturm-Liouville operators
title_full The nature of spectrum for some singular Sturm-Liouville operators
title_fullStr The nature of spectrum for some singular Sturm-Liouville operators
title_full_unstemmed The nature of spectrum for some singular Sturm-Liouville operators
title_sort nature of spectrum for some singular sturm-liouville operators
publishDate 2006
url http://ndltd.ncl.edu.tw/handle/07897585388516090550
work_keys_str_mv AT shuochilee thenatureofspectrumforsomesingularsturmliouvilleoperators
AT lǐshuòqí thenatureofspectrumforsomesingularsturmliouvilleoperators
AT shuochilee yīxiēqíyìsturmliouvillesuànzidepǔdejiégòu
AT lǐshuòqí yīxiēqíyìsturmliouvillesuànzidepǔdejiégòu
AT shuochilee natureofspectrumforsomesingularsturmliouvilleoperators
AT lǐshuòqí natureofspectrumforsomesingularsturmliouvilleoperators
_version_ 1718282241537212416