The nature of spectrum for some singular Sturm-Liouville operators
碩士 === 國立中山大學 === 應用數學系研究所 === 94 === We give a report on the Sturm-Liouville problem defined on semi-infinite interval. Here as an extension of the Fourier expansion, we have a Parseval equality involving a Fourier integral with respect to a spectral function rho. This function rho is also related...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | en_US |
Published: |
2006
|
Online Access: | http://ndltd.ncl.edu.tw/handle/07897585388516090550 |
id |
ndltd-TW-094NSYS5507030 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-094NSYS55070302016-05-27T04:18:09Z http://ndltd.ncl.edu.tw/handle/07897585388516090550 The nature of spectrum for some singular Sturm-Liouville operators 一些奇異Sturm-Liouville算子的譜的結構 Shuo-Chi Lee 李碩祈 碩士 國立中山大學 應用數學系研究所 94 We give a report on the Sturm-Liouville problem defined on semi-infinite interval. Here as an extension of the Fourier expansion, we have a Parseval equality involving a Fourier integral with respect to a spectral function rho. This function rho is also related to Titchmarsh-Weyl m-function m(lambda) giving L2 solutions of the problem. The spectrum can be viewed as nonconstant points of the spectral function. Following Titchmarsh’s monograph, we shall investigate the nature of the spectrum associated with different asymptotic behaviors of the potential function q, namely, when q→∞, q→0 or q→-∞. Chun-Kong Law 羅春光 2006 學位論文 ; thesis 56 en_US |
collection |
NDLTD |
language |
en_US |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 國立中山大學 === 應用數學系研究所 === 94 === We give a report on the Sturm-Liouville problem defined on semi-infinite interval. Here as an extension of the Fourier expansion, we have a Parseval equality involving a Fourier integral with respect to a spectral function rho. This function rho is also related to Titchmarsh-Weyl m-function m(lambda) giving L2 solutions of the problem. The spectrum can be viewed as nonconstant points of the spectral function. Following Titchmarsh’s monograph, we shall investigate the nature of the spectrum associated with different asymptotic behaviors of the potential function q, namely, when q→∞, q→0 or q→-∞.
|
author2 |
Chun-Kong Law |
author_facet |
Chun-Kong Law Shuo-Chi Lee 李碩祈 |
author |
Shuo-Chi Lee 李碩祈 |
spellingShingle |
Shuo-Chi Lee 李碩祈 The nature of spectrum for some singular Sturm-Liouville operators |
author_sort |
Shuo-Chi Lee |
title |
The nature of spectrum for some singular Sturm-Liouville operators |
title_short |
The nature of spectrum for some singular Sturm-Liouville operators |
title_full |
The nature of spectrum for some singular Sturm-Liouville operators |
title_fullStr |
The nature of spectrum for some singular Sturm-Liouville operators |
title_full_unstemmed |
The nature of spectrum for some singular Sturm-Liouville operators |
title_sort |
nature of spectrum for some singular sturm-liouville operators |
publishDate |
2006 |
url |
http://ndltd.ncl.edu.tw/handle/07897585388516090550 |
work_keys_str_mv |
AT shuochilee thenatureofspectrumforsomesingularsturmliouvilleoperators AT lǐshuòqí thenatureofspectrumforsomesingularsturmliouvilleoperators AT shuochilee yīxiēqíyìsturmliouvillesuànzidepǔdejiégòu AT lǐshuòqí yīxiēqíyìsturmliouvillesuànzidepǔdejiégòu AT shuochilee natureofspectrumforsomesingularsturmliouvilleoperators AT lǐshuòqí natureofspectrumforsomesingularsturmliouvilleoperators |
_version_ |
1718282241537212416 |