High Order FEMs Using Penalty Technigues for Poisson''s Eigenvalue Problems with Periodical Boundary Conditions

碩士 === 國立中山大學 === 應用數學系研究所 === 94 === Adini’s elements are applied to Poisson’s eigenvalue problems in the unit square with periodical boundary conditions and the leading eigenvalues are obtained from the Rayleigh quotient. The penalty techniques are developed to copy with periodical boundary condit...

Full description

Bibliographic Details
Main Authors: Shr-jie Jian, 簡士傑
Other Authors: Hung-Tsai Huang
Format: Others
Language:en_US
Published: 2006
Online Access:http://ndltd.ncl.edu.tw/handle/25656404801935988332
id ndltd-TW-094NSYS5507016
record_format oai_dc
spelling ndltd-TW-094NSYS55070162016-05-27T04:18:58Z http://ndltd.ncl.edu.tw/handle/25656404801935988332 High Order FEMs Using Penalty Technigues for Poisson''s Eigenvalue Problems with Periodical Boundary Conditions 用高階有限元與罰(penalty)技巧求解週期邊界條件的Poisson特徵值問題 Shr-jie Jian 簡士傑 碩士 國立中山大學 應用數學系研究所 94 Adini’s elements are applied to Poisson’s eigenvalue problems in the unit square with periodical boundary conditions and the leading eigenvalues are obtained from the Rayleigh quotient. The penalty techniques are developed to copy with periodical boundary conditions, and superconvergence is also explored for leading eigenvalues. The optimal convergence O(h^6) are obtained for quasiuniform elements (see [2, 21]). When the uniform rectangular elements are used, the superconvergence O(h^6+p) with p = 1 or p = 2 of leading eigenvalues is proved, where h is the maximal boundary length of Adini’s elements. Numerical experiments are carried to verify the analysis made. Keywords. Adini’s elements, Poisson’s equation, periodical boundary conditions, eigenvalue problems. Hung-Tsai Huang Zi-Cai Li 黃宏財 李子才 2006 學位論文 ; thesis 84 en_US
collection NDLTD
language en_US
format Others
sources NDLTD
description 碩士 === 國立中山大學 === 應用數學系研究所 === 94 === Adini’s elements are applied to Poisson’s eigenvalue problems in the unit square with periodical boundary conditions and the leading eigenvalues are obtained from the Rayleigh quotient. The penalty techniques are developed to copy with periodical boundary conditions, and superconvergence is also explored for leading eigenvalues. The optimal convergence O(h^6) are obtained for quasiuniform elements (see [2, 21]). When the uniform rectangular elements are used, the superconvergence O(h^6+p) with p = 1 or p = 2 of leading eigenvalues is proved, where h is the maximal boundary length of Adini’s elements. Numerical experiments are carried to verify the analysis made. Keywords. Adini’s elements, Poisson’s equation, periodical boundary conditions, eigenvalue problems.
author2 Hung-Tsai Huang
author_facet Hung-Tsai Huang
Shr-jie Jian
簡士傑
author Shr-jie Jian
簡士傑
spellingShingle Shr-jie Jian
簡士傑
High Order FEMs Using Penalty Technigues for Poisson''s Eigenvalue Problems with Periodical Boundary Conditions
author_sort Shr-jie Jian
title High Order FEMs Using Penalty Technigues for Poisson''s Eigenvalue Problems with Periodical Boundary Conditions
title_short High Order FEMs Using Penalty Technigues for Poisson''s Eigenvalue Problems with Periodical Boundary Conditions
title_full High Order FEMs Using Penalty Technigues for Poisson''s Eigenvalue Problems with Periodical Boundary Conditions
title_fullStr High Order FEMs Using Penalty Technigues for Poisson''s Eigenvalue Problems with Periodical Boundary Conditions
title_full_unstemmed High Order FEMs Using Penalty Technigues for Poisson''s Eigenvalue Problems with Periodical Boundary Conditions
title_sort high order fems using penalty technigues for poisson''s eigenvalue problems with periodical boundary conditions
publishDate 2006
url http://ndltd.ncl.edu.tw/handle/25656404801935988332
work_keys_str_mv AT shrjiejian highorderfemsusingpenaltytechniguesforpoissonseigenvalueproblemswithperiodicalboundaryconditions
AT jiǎnshìjié highorderfemsusingpenaltytechniguesforpoissonseigenvalueproblemswithperiodicalboundaryconditions
AT shrjiejian yònggāojiēyǒuxiànyuányǔfápenaltyjìqiǎoqiújiězhōuqībiānjiètiáojiàndepoissontèzhēngzhíwèntí
AT jiǎnshìjié yònggāojiēyǒuxiànyuányǔfápenaltyjìqiǎoqiújiězhōuqībiānjiètiáojiàndepoissontèzhēngzhíwèntí
_version_ 1718284211645841408