High Order FEMs Using Penalty Technigues for Poisson''s Eigenvalue Problems with Periodical Boundary Conditions
碩士 === 國立中山大學 === 應用數學系研究所 === 94 === Adini’s elements are applied to Poisson’s eigenvalue problems in the unit square with periodical boundary conditions and the leading eigenvalues are obtained from the Rayleigh quotient. The penalty techniques are developed to copy with periodical boundary condit...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | en_US |
Published: |
2006
|
Online Access: | http://ndltd.ncl.edu.tw/handle/25656404801935988332 |
id |
ndltd-TW-094NSYS5507016 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-094NSYS55070162016-05-27T04:18:58Z http://ndltd.ncl.edu.tw/handle/25656404801935988332 High Order FEMs Using Penalty Technigues for Poisson''s Eigenvalue Problems with Periodical Boundary Conditions 用高階有限元與罰(penalty)技巧求解週期邊界條件的Poisson特徵值問題 Shr-jie Jian 簡士傑 碩士 國立中山大學 應用數學系研究所 94 Adini’s elements are applied to Poisson’s eigenvalue problems in the unit square with periodical boundary conditions and the leading eigenvalues are obtained from the Rayleigh quotient. The penalty techniques are developed to copy with periodical boundary conditions, and superconvergence is also explored for leading eigenvalues. The optimal convergence O(h^6) are obtained for quasiuniform elements (see [2, 21]). When the uniform rectangular elements are used, the superconvergence O(h^6+p) with p = 1 or p = 2 of leading eigenvalues is proved, where h is the maximal boundary length of Adini’s elements. Numerical experiments are carried to verify the analysis made. Keywords. Adini’s elements, Poisson’s equation, periodical boundary conditions, eigenvalue problems. Hung-Tsai Huang Zi-Cai Li 黃宏財 李子才 2006 學位論文 ; thesis 84 en_US |
collection |
NDLTD |
language |
en_US |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 國立中山大學 === 應用數學系研究所 === 94 === Adini’s elements are applied to Poisson’s eigenvalue problems in the unit square with periodical boundary conditions and the leading eigenvalues are obtained from the Rayleigh quotient. The penalty techniques are developed to copy with periodical boundary conditions, and superconvergence is also explored for leading eigenvalues. The optimal convergence O(h^6) are obtained for quasiuniform elements
(see [2, 21]). When the uniform rectangular elements are used, the superconvergence O(h^6+p) with p = 1 or p = 2 of leading eigenvalues is proved, where h is the maximal boundary length of Adini’s elements. Numerical experiments are carried to verify the analysis made.
Keywords. Adini’s elements, Poisson’s equation, periodical boundary conditions, eigenvalue problems.
|
author2 |
Hung-Tsai Huang |
author_facet |
Hung-Tsai Huang Shr-jie Jian 簡士傑 |
author |
Shr-jie Jian 簡士傑 |
spellingShingle |
Shr-jie Jian 簡士傑 High Order FEMs Using Penalty Technigues for Poisson''s Eigenvalue Problems with Periodical Boundary Conditions |
author_sort |
Shr-jie Jian |
title |
High Order FEMs Using Penalty Technigues for Poisson''s Eigenvalue Problems with Periodical Boundary Conditions |
title_short |
High Order FEMs Using Penalty Technigues for Poisson''s Eigenvalue Problems with Periodical Boundary Conditions |
title_full |
High Order FEMs Using Penalty Technigues for Poisson''s Eigenvalue Problems with Periodical Boundary Conditions |
title_fullStr |
High Order FEMs Using Penalty Technigues for Poisson''s Eigenvalue Problems with Periodical Boundary Conditions |
title_full_unstemmed |
High Order FEMs Using Penalty Technigues for Poisson''s Eigenvalue Problems with Periodical Boundary Conditions |
title_sort |
high order fems using penalty technigues for poisson''s eigenvalue problems with periodical boundary conditions |
publishDate |
2006 |
url |
http://ndltd.ncl.edu.tw/handle/25656404801935988332 |
work_keys_str_mv |
AT shrjiejian highorderfemsusingpenaltytechniguesforpoissonseigenvalueproblemswithperiodicalboundaryconditions AT jiǎnshìjié highorderfemsusingpenaltytechniguesforpoissonseigenvalueproblemswithperiodicalboundaryconditions AT shrjiejian yònggāojiēyǒuxiànyuányǔfápenaltyjìqiǎoqiújiězhōuqībiānjiètiáojiàndepoissontèzhēngzhíwèntí AT jiǎnshìjié yònggāojiēyǒuxiànyuányǔfápenaltyjìqiǎoqiújiězhōuqībiānjiètiáojiàndepoissontèzhēngzhíwèntí |
_version_ |
1718284211645841408 |