The numerical investigation for the equilibrium solution paths of a Non-isothermal diffusion and reaction model

碩士 === 國立新竹教育大學 === 人資處數學教育碩士班 === 94 === The purpose of this paper is to numerically investigate the equilibrium solution paths of non-isothermal diffusion and reaction model. The main theories we used are Newton iterative method, Implicit Function Theorem, local continuation method, Secant Predict...

Full description

Bibliographic Details
Main Author: 連萬智
Other Authors: 簡國清
Format: Others
Language:zh-TW
Published: 2005
Online Access:http://ndltd.ncl.edu.tw/handle/22855710201699155013
id ndltd-TW-094NHCT5480008
record_format oai_dc
spelling ndltd-TW-094NHCT54800082015-10-13T10:34:46Z http://ndltd.ncl.edu.tw/handle/22855710201699155013 The numerical investigation for the equilibrium solution paths of a Non-isothermal diffusion and reaction model 一個非等溫擴散及反應模型的平衡解解路徑之數值探討 連萬智 碩士 國立新竹教育大學 人資處數學教育碩士班 94 The purpose of this paper is to numerically investigate the equilibrium solution paths of non-isothermal diffusion and reaction model. The main theories we used are Newton iterative method, Implicit Function Theorem, local continuation method, Secant Predictor and Pseudo-arclength continuation algorithm to find out the multiple solutions within limited range of parameters. Therefore we can investigate and change various parameters to gain different solutions. Finally we will determine all the turning points. 簡國清 2005 學位論文 ; thesis 82 zh-TW
collection NDLTD
language zh-TW
format Others
sources NDLTD
description 碩士 === 國立新竹教育大學 === 人資處數學教育碩士班 === 94 === The purpose of this paper is to numerically investigate the equilibrium solution paths of non-isothermal diffusion and reaction model. The main theories we used are Newton iterative method, Implicit Function Theorem, local continuation method, Secant Predictor and Pseudo-arclength continuation algorithm to find out the multiple solutions within limited range of parameters. Therefore we can investigate and change various parameters to gain different solutions. Finally we will determine all the turning points.
author2 簡國清
author_facet 簡國清
連萬智
author 連萬智
spellingShingle 連萬智
The numerical investigation for the equilibrium solution paths of a Non-isothermal diffusion and reaction model
author_sort 連萬智
title The numerical investigation for the equilibrium solution paths of a Non-isothermal diffusion and reaction model
title_short The numerical investigation for the equilibrium solution paths of a Non-isothermal diffusion and reaction model
title_full The numerical investigation for the equilibrium solution paths of a Non-isothermal diffusion and reaction model
title_fullStr The numerical investigation for the equilibrium solution paths of a Non-isothermal diffusion and reaction model
title_full_unstemmed The numerical investigation for the equilibrium solution paths of a Non-isothermal diffusion and reaction model
title_sort numerical investigation for the equilibrium solution paths of a non-isothermal diffusion and reaction model
publishDate 2005
url http://ndltd.ncl.edu.tw/handle/22855710201699155013
work_keys_str_mv AT liánwànzhì thenumericalinvestigationfortheequilibriumsolutionpathsofanonisothermaldiffusionandreactionmodel
AT liánwànzhì yīgèfēiděngwēnkuòsànjífǎnyīngmóxíngdepínghéngjiějiělùjìngzhīshùzhítàntǎo
AT liánwànzhì numericalinvestigationfortheequilibriumsolutionpathsofanonisothermaldiffusionandreactionmodel
_version_ 1716830362008551424