Summary: | 碩士 === 國立中央大學 === 環境工程研究所 === 94 === The continuous-flow sequencing batch reactor (CFSBR) mainly utilizes and monitors the bend of pH and ORP to determine the change of the phase in the development of the real-time control system, the stability of water quality and reduction of cost can already improve and get rid of efficiency. However, some water-quality characteristics, for instance COD, NH4+-N, NO2--N, NO3--N and PO43--P, etc. do not have effectively automatic monitoring technology yet. It makes the anaerobic phase unable to grasp an ammonification and bio-phosphate release, and influence nitrification and bio-phosphate up-take in the follow-up aerobic phase. Thus it leads the bad removal rate and the unstable effluent quality.
Though the existing on-line sensors are usually unable to accomplish overall monitoring, these variables are determined with a significant time delay. However, CFSBR is a half-opening system; its water-quality characteristic has certain relation with each other. In this study, the water quality evaluate formulas was developed using the network approach, which can simultaneously utilize on-line information to evaluate water quality. In monitoring and controlling CFSBR, the information of nutrient dynamics is very important. In this reason, this study tries to join the initial value and the state variable into input data. And the results show this method can evaluate NH4+-N, NO2--N, NO3--N and PO43--P concentrations and trends well.
|