The study of thermal properties in polystyrene/clay nanocomposites

碩士 === 國立交通大學 === 應用化學系所 === 94 === Nanoclay-filled polymeric systems offer the prospect of greatly improving many of the properties of their mother polymers. In the recent literature, there have been reports of nanoclay-filled polymeric systems that display significant improvements in tensile and t...

Full description

Bibliographic Details
Main Authors: Huei-Kuan Fu, 傅懷廣
Other Authors: Feng-Chih Chang
Format: Others
Language:zh-TW
Published: 2005
Online Access:http://ndltd.ncl.edu.tw/handle/vhs37u
id ndltd-TW-094NCTU5500015
record_format oai_dc
collection NDLTD
language zh-TW
format Others
sources NDLTD
description 碩士 === 國立交通大學 === 應用化學系所 === 94 === Nanoclay-filled polymeric systems offer the prospect of greatly improving many of the properties of their mother polymers. In the recent literature, there have been reports of nanoclay-filled polymeric systems that display significant improvements in tensile and thermal properties, heat distortion temperature, and resistance to flammability and reduced permeability to small molecules and reduced solvent uptake. A common observation emerging from these studies is that the magnitude of improvement depends strongly on the state of dispersion of the clay layers in the polymer matrix. The experiment work in this dissertation was divided into three areas: 1. We have prepared polystyrene/clay nanocomposites using an emulsion polymerization technique. The nanocomposites were exfoliated at up to a 3 wt % content of pristine clay relative to the amount of polystyrene (PS). We used two different surfactants for the montmorillonite: the aminopropylisobutyl polyhedral oligomeric silsesquioxane (POSS) and the ammonium salt of cetylpyridinium chloride (CPC). Both surfactants can intercalate into the layers of the pristine clay dispersed in water prior to polymerization. Although the d spacing of the POSS-intercalated clay is relatively smaller than that of the CPC-intercalated clay, PS more easily intercalates and exfoliates the POSS-treated clay than the CPC-treated clay. IR spectroscopic analysis further confirms the intercalation of POSS within the clay layers. We used X-ray diffraction (XRD) and transmission electron microscopy (TEM) to characterize the structures of the nanocomposites. The nanocomposite prepared from the clay treated with the POSS containing surfactant is exfoliated, while an intercalated clay was obtained from the CPC-treated surfactant. The molecular weights of polystyrene (PS) obtained from the nanocomposite is slightly lower than the virgin PS formed under similar polymerization conditions. The value of Tg of the PS component in the nanocomposite is 8 °C higher than the virgin PS and its thermal decomposition temperature (21 °C) is also higher significantly. The presence of the POSS unit in the MMT enhances the thermal stability of the polystyrene. 2. We synthesized intercalation agent APB and prepared polystyrene/clay nanocomposites using an emulsion polymerization technique. We used two different intercalation agents to treat clay:the phosphonium salt(APP)and the ammonium salt(APB).We expected that the intercalation agent APB containing rigid adamantane group also has high thermal stability besides phosphonium group. The molecular weights of polystyrene(PS) obtained from the nanocomposites is slightly lower than the virgin PS formed under similar polymerization conditions. The coefficient of thermal expansion(CTE) was obtained from thermomechanical analysis. A 44~55 % decrease of CTE is observed for APB- and APP-intercalated clay nanocomposites relative to pure PS. 3. We have prepared polystyrene/clay nanocomposites using an emulsion polymerization technique. The nanocomposites were exfoliated at 3wt% content of pristine clay relative to the amount of polystyrene (PS). We employed two surfactants for the montmorillonite: cetylpyridinium chloride (CPC) and the CPC/α-CD inclusion complex. Prior to polymerization, each surfactant intercalates into the layers of the pristine clay dispersed in water. The inclusion complex was characterized by X-ray diffraction, 13C CP/MAS NMR spectra, and 1H NMR spectroscopy, and TGA. X-Ray powder patterns of the CPC/α-CD complex indicate that the α-CDs units form channels. The 13C CP/MAS NMR spectrum of the complex suggests that a CPC chain is included in the channel formed by the α-CDs. The 1H NMR spectra of the complexes indicate that the stoichiometry of the complexes is 1:2 (i.e.,one CPC molecule and two α-CD units). The TGA reveals that the inclusion complex has higher thermal stability relative to the virgin CPC. We employed both X-ray diffraction (XRD) and transmission electron microscopy (TEM) to characterize the structures of the nanocomposites. The value of Tg of the PS component in the nanocomposite is 6 °C higher than that of the virgin PS and its thermal decomposition temperature is 33 °C higher. The CPC/α-CD-treated clay is more effective than is virgin CPC-treated clay at enhancing the thermal stability of polystyrene.
author2 Feng-Chih Chang
author_facet Feng-Chih Chang
Huei-Kuan Fu
傅懷廣
author Huei-Kuan Fu
傅懷廣
spellingShingle Huei-Kuan Fu
傅懷廣
The study of thermal properties in polystyrene/clay nanocomposites
author_sort Huei-Kuan Fu
title The study of thermal properties in polystyrene/clay nanocomposites
title_short The study of thermal properties in polystyrene/clay nanocomposites
title_full The study of thermal properties in polystyrene/clay nanocomposites
title_fullStr The study of thermal properties in polystyrene/clay nanocomposites
title_full_unstemmed The study of thermal properties in polystyrene/clay nanocomposites
title_sort study of thermal properties in polystyrene/clay nanocomposites
publishDate 2005
url http://ndltd.ncl.edu.tw/handle/vhs37u
work_keys_str_mv AT hueikuanfu thestudyofthermalpropertiesinpolystyreneclaynanocomposites
AT fùhuáiguǎng thestudyofthermalpropertiesinpolystyreneclaynanocomposites
AT hueikuanfu jùběnyǐxīniántǔnàimǐfùhécáiliàorèxìngzhìzhīyánjiū
AT fùhuáiguǎng jùběnyǐxīniántǔnàimǐfùhécáiliàorèxìngzhìzhīyánjiū
AT hueikuanfu studyofthermalpropertiesinpolystyreneclaynanocomposites
AT fùhuáiguǎng studyofthermalpropertiesinpolystyreneclaynanocomposites
_version_ 1719087366508904448
spelling ndltd-TW-094NCTU55000152019-05-15T19:18:41Z http://ndltd.ncl.edu.tw/handle/vhs37u The study of thermal properties in polystyrene/clay nanocomposites 聚苯乙烯/黏土奈米複合材料熱性質之研究 Huei-Kuan Fu 傅懷廣 碩士 國立交通大學 應用化學系所 94 Nanoclay-filled polymeric systems offer the prospect of greatly improving many of the properties of their mother polymers. In the recent literature, there have been reports of nanoclay-filled polymeric systems that display significant improvements in tensile and thermal properties, heat distortion temperature, and resistance to flammability and reduced permeability to small molecules and reduced solvent uptake. A common observation emerging from these studies is that the magnitude of improvement depends strongly on the state of dispersion of the clay layers in the polymer matrix. The experiment work in this dissertation was divided into three areas: 1. We have prepared polystyrene/clay nanocomposites using an emulsion polymerization technique. The nanocomposites were exfoliated at up to a 3 wt % content of pristine clay relative to the amount of polystyrene (PS). We used two different surfactants for the montmorillonite: the aminopropylisobutyl polyhedral oligomeric silsesquioxane (POSS) and the ammonium salt of cetylpyridinium chloride (CPC). Both surfactants can intercalate into the layers of the pristine clay dispersed in water prior to polymerization. Although the d spacing of the POSS-intercalated clay is relatively smaller than that of the CPC-intercalated clay, PS more easily intercalates and exfoliates the POSS-treated clay than the CPC-treated clay. IR spectroscopic analysis further confirms the intercalation of POSS within the clay layers. We used X-ray diffraction (XRD) and transmission electron microscopy (TEM) to characterize the structures of the nanocomposites. The nanocomposite prepared from the clay treated with the POSS containing surfactant is exfoliated, while an intercalated clay was obtained from the CPC-treated surfactant. The molecular weights of polystyrene (PS) obtained from the nanocomposite is slightly lower than the virgin PS formed under similar polymerization conditions. The value of Tg of the PS component in the nanocomposite is 8 °C higher than the virgin PS and its thermal decomposition temperature (21 °C) is also higher significantly. The presence of the POSS unit in the MMT enhances the thermal stability of the polystyrene. 2. We synthesized intercalation agent APB and prepared polystyrene/clay nanocomposites using an emulsion polymerization technique. We used two different intercalation agents to treat clay:the phosphonium salt(APP)and the ammonium salt(APB).We expected that the intercalation agent APB containing rigid adamantane group also has high thermal stability besides phosphonium group. The molecular weights of polystyrene(PS) obtained from the nanocomposites is slightly lower than the virgin PS formed under similar polymerization conditions. The coefficient of thermal expansion(CTE) was obtained from thermomechanical analysis. A 44~55 % decrease of CTE is observed for APB- and APP-intercalated clay nanocomposites relative to pure PS. 3. We have prepared polystyrene/clay nanocomposites using an emulsion polymerization technique. The nanocomposites were exfoliated at 3wt% content of pristine clay relative to the amount of polystyrene (PS). We employed two surfactants for the montmorillonite: cetylpyridinium chloride (CPC) and the CPC/α-CD inclusion complex. Prior to polymerization, each surfactant intercalates into the layers of the pristine clay dispersed in water. The inclusion complex was characterized by X-ray diffraction, 13C CP/MAS NMR spectra, and 1H NMR spectroscopy, and TGA. X-Ray powder patterns of the CPC/α-CD complex indicate that the α-CDs units form channels. The 13C CP/MAS NMR spectrum of the complex suggests that a CPC chain is included in the channel formed by the α-CDs. The 1H NMR spectra of the complexes indicate that the stoichiometry of the complexes is 1:2 (i.e.,one CPC molecule and two α-CD units). The TGA reveals that the inclusion complex has higher thermal stability relative to the virgin CPC. We employed both X-ray diffraction (XRD) and transmission electron microscopy (TEM) to characterize the structures of the nanocomposites. The value of Tg of the PS component in the nanocomposite is 6 °C higher than that of the virgin PS and its thermal decomposition temperature is 33 °C higher. The CPC/α-CD-treated clay is more effective than is virgin CPC-treated clay at enhancing the thermal stability of polystyrene. Feng-Chih Chang 張豐志 2005 學位論文 ; thesis 100 zh-TW