On the study of the Existence of Neimark-Sacker Hopf bifurcation for a discrete predator-prey model

碩士 === 國立成功大學 === 數學系應用數學碩博士班 === 94 === This paper deals with the Nicholson-Bailey model which arises from the Ricker model (x, y)→(xe^[r(1-x)-αy], x[1-e^(-αy)]). The purpose of this paper is the study on the existence of the Neimark-Sacker Hopf bifurcation which is believed that the corresponding ...

Full description

Bibliographic Details
Main Authors: Zhang-Yi Weng, 翁章譯
Other Authors: Chern-Shuh Wang
Format: Others
Language:en_US
Published: 2006
Online Access:http://ndltd.ncl.edu.tw/handle/02996846798646237879
id ndltd-TW-094NCKU5507015
record_format oai_dc
spelling ndltd-TW-094NCKU55070152015-12-16T04:31:52Z http://ndltd.ncl.edu.tw/handle/02996846798646237879 On the study of the Existence of Neimark-Sacker Hopf bifurcation for a discrete predator-prey model 離散型捕食者與被捕食者模型之霍普夫分歧的存在性之研究 Zhang-Yi Weng 翁章譯 碩士 國立成功大學 數學系應用數學碩博士班 94 This paper deals with the Nicholson-Bailey model which arises from the Ricker model (x, y)→(xe^[r(1-x)-αy], x[1-e^(-αy)]). The purpose of this paper is the study on the existence of the Neimark-Sacker Hopf bifurcation which is believed that the corresponding dynamic system contains a chaotic orbit. Based on the bifurcation diagram versus parameter α which is in (3.2, 3.3), we realize that a Neimark-Sacker Hopf bifurcation takes place at α which is in (3.2, 3.3). We hence investigate a rigorous proof of the existence of the Neimark-Sacker Hopf bifurcation, which routes the Ricker model to a chaotic system. Chern-Shuh Wang 王辰樹 2006 學位論文 ; thesis 24 en_US
collection NDLTD
language en_US
format Others
sources NDLTD
description 碩士 === 國立成功大學 === 數學系應用數學碩博士班 === 94 === This paper deals with the Nicholson-Bailey model which arises from the Ricker model (x, y)→(xe^[r(1-x)-αy], x[1-e^(-αy)]). The purpose of this paper is the study on the existence of the Neimark-Sacker Hopf bifurcation which is believed that the corresponding dynamic system contains a chaotic orbit. Based on the bifurcation diagram versus parameter α which is in (3.2, 3.3), we realize that a Neimark-Sacker Hopf bifurcation takes place at α which is in (3.2, 3.3). We hence investigate a rigorous proof of the existence of the Neimark-Sacker Hopf bifurcation, which routes the Ricker model to a chaotic system.
author2 Chern-Shuh Wang
author_facet Chern-Shuh Wang
Zhang-Yi Weng
翁章譯
author Zhang-Yi Weng
翁章譯
spellingShingle Zhang-Yi Weng
翁章譯
On the study of the Existence of Neimark-Sacker Hopf bifurcation for a discrete predator-prey model
author_sort Zhang-Yi Weng
title On the study of the Existence of Neimark-Sacker Hopf bifurcation for a discrete predator-prey model
title_short On the study of the Existence of Neimark-Sacker Hopf bifurcation for a discrete predator-prey model
title_full On the study of the Existence of Neimark-Sacker Hopf bifurcation for a discrete predator-prey model
title_fullStr On the study of the Existence of Neimark-Sacker Hopf bifurcation for a discrete predator-prey model
title_full_unstemmed On the study of the Existence of Neimark-Sacker Hopf bifurcation for a discrete predator-prey model
title_sort on the study of the existence of neimark-sacker hopf bifurcation for a discrete predator-prey model
publishDate 2006
url http://ndltd.ncl.edu.tw/handle/02996846798646237879
work_keys_str_mv AT zhangyiweng onthestudyoftheexistenceofneimarksackerhopfbifurcationforadiscretepredatorpreymodel
AT wēngzhāngyì onthestudyoftheexistenceofneimarksackerhopfbifurcationforadiscretepredatorpreymodel
AT zhangyiweng lísànxíngbǔshízhěyǔbèibǔshízhěmóxíngzhīhuòpǔfūfēnqídecúnzàixìngzhīyánjiū
AT wēngzhāngyì lísànxíngbǔshízhěyǔbèibǔshízhěmóxíngzhīhuòpǔfūfēnqídecúnzàixìngzhīyánjiū
_version_ 1718149197240205312