On the study of the Existence of Neimark-Sacker Hopf bifurcation for a discrete predator-prey model
碩士 === 國立成功大學 === 數學系應用數學碩博士班 === 94 === This paper deals with the Nicholson-Bailey model which arises from the Ricker model (x, y)→(xe^[r(1-x)-αy], x[1-e^(-αy)]). The purpose of this paper is the study on the existence of the Neimark-Sacker Hopf bifurcation which is believed that the corresponding ...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | en_US |
Published: |
2006
|
Online Access: | http://ndltd.ncl.edu.tw/handle/02996846798646237879 |
id |
ndltd-TW-094NCKU5507015 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-094NCKU55070152015-12-16T04:31:52Z http://ndltd.ncl.edu.tw/handle/02996846798646237879 On the study of the Existence of Neimark-Sacker Hopf bifurcation for a discrete predator-prey model 離散型捕食者與被捕食者模型之霍普夫分歧的存在性之研究 Zhang-Yi Weng 翁章譯 碩士 國立成功大學 數學系應用數學碩博士班 94 This paper deals with the Nicholson-Bailey model which arises from the Ricker model (x, y)→(xe^[r(1-x)-αy], x[1-e^(-αy)]). The purpose of this paper is the study on the existence of the Neimark-Sacker Hopf bifurcation which is believed that the corresponding dynamic system contains a chaotic orbit. Based on the bifurcation diagram versus parameter α which is in (3.2, 3.3), we realize that a Neimark-Sacker Hopf bifurcation takes place at α which is in (3.2, 3.3). We hence investigate a rigorous proof of the existence of the Neimark-Sacker Hopf bifurcation, which routes the Ricker model to a chaotic system. Chern-Shuh Wang 王辰樹 2006 學位論文 ; thesis 24 en_US |
collection |
NDLTD |
language |
en_US |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 國立成功大學 === 數學系應用數學碩博士班 === 94 === This paper deals with the Nicholson-Bailey model which arises from the Ricker model (x, y)→(xe^[r(1-x)-αy], x[1-e^(-αy)]). The purpose of this paper is the study on the existence of the Neimark-Sacker Hopf bifurcation which is believed that the corresponding dynamic system contains a chaotic orbit. Based on the bifurcation diagram versus parameter α which is in (3.2, 3.3), we realize that a Neimark-Sacker Hopf bifurcation takes place at α which is in (3.2, 3.3). We hence investigate a rigorous proof of the existence of the Neimark-Sacker Hopf bifurcation, which routes the Ricker model to a chaotic system.
|
author2 |
Chern-Shuh Wang |
author_facet |
Chern-Shuh Wang Zhang-Yi Weng 翁章譯 |
author |
Zhang-Yi Weng 翁章譯 |
spellingShingle |
Zhang-Yi Weng 翁章譯 On the study of the Existence of Neimark-Sacker Hopf bifurcation for a discrete predator-prey model |
author_sort |
Zhang-Yi Weng |
title |
On the study of the Existence of Neimark-Sacker Hopf bifurcation for a discrete predator-prey model |
title_short |
On the study of the Existence of Neimark-Sacker Hopf bifurcation for a discrete predator-prey model |
title_full |
On the study of the Existence of Neimark-Sacker Hopf bifurcation for a discrete predator-prey model |
title_fullStr |
On the study of the Existence of Neimark-Sacker Hopf bifurcation for a discrete predator-prey model |
title_full_unstemmed |
On the study of the Existence of Neimark-Sacker Hopf bifurcation for a discrete predator-prey model |
title_sort |
on the study of the existence of neimark-sacker hopf bifurcation for a discrete predator-prey model |
publishDate |
2006 |
url |
http://ndltd.ncl.edu.tw/handle/02996846798646237879 |
work_keys_str_mv |
AT zhangyiweng onthestudyoftheexistenceofneimarksackerhopfbifurcationforadiscretepredatorpreymodel AT wēngzhāngyì onthestudyoftheexistenceofneimarksackerhopfbifurcationforadiscretepredatorpreymodel AT zhangyiweng lísànxíngbǔshízhěyǔbèibǔshízhěmóxíngzhīhuòpǔfūfēnqídecúnzàixìngzhīyánjiū AT wēngzhāngyì lísànxíngbǔshízhěyǔbèibǔshízhěmóxíngzhīhuòpǔfūfēnqídecúnzàixìngzhīyánjiū |
_version_ |
1718149197240205312 |