Growing Nano-Capsule Array Inside an Alumina Membrane by the Laminate Foils Approach

碩士 === 國立中興大學 === 機械工程學系所 === 94 === The foils laminate approach can be implemented to grow bi-directional porous pattern from both the top and bottom surfaces of an aluminum foil. It was intuitively inferred that leakage of the etchant between the foils may a feasible cause to have the upward pores...

Full description

Bibliographic Details
Main Authors: Jen-Yi Fan, 范振益
Other Authors: Gou-Jen Wang
Format: Others
Language:zh-TW
Published: 2006
Online Access:http://ndltd.ncl.edu.tw/handle/44392626450606951008
Description
Summary:碩士 === 國立中興大學 === 機械工程學系所 === 94 === The foils laminate approach can be implemented to grow bi-directional porous pattern from both the top and bottom surfaces of an aluminum foil. It was intuitively inferred that leakage of the etchant between the foils may a feasible cause to have the upward pores grow in the notches of the unpolished surface. The leakage blocking and triple layers laminate experiments were conducted to verify this hypothesis. Experimental results disprove this leakage hypothesis. It is further inferred that applied voltage is diluted by the aluminum foils induced capacitor. The voltage reducing effect suppresses the dissolution more than oxidation such that an additional porous array that grows down from the cell base is formed. This voltage reducing mechanism has been verified by the pore height comparison and washer insertion experiments. Moreover, the laminate foils anodization was implemented to grow a nano-capsule array inside an alumina foil. This special structure of anodic aluminum oxide is novel.