A hybrid incremental clustering method—combining SVM and enhanced CBC algorithm

碩士 === 中華大學 === 資訊管理學系 === 94 === In the study, a new hybrid incremental clustering method is proposed in combination with SVM and enhanced CBC algorithm. SVM classifies the incoming document to see if it belongs to the existing classes. Then enhanced CBC algorithm is used to cluster the unclassifie...

Full description

Bibliographic Details
Main Authors: Hsieh,Kong-Ling, 謝岡陵
Other Authors: Chiu,Deng-Yiv
Format: Others
Language:zh-TW
Published: 2006
Online Access:http://ndltd.ncl.edu.tw/handle/82273717239496436297
id ndltd-TW-094CHPI0396015
record_format oai_dc
spelling ndltd-TW-094CHPI03960152015-10-13T10:38:07Z http://ndltd.ncl.edu.tw/handle/82273717239496436297 A hybrid incremental clustering method—combining SVM and enhanced CBC algorithm 漸進式分群方法—結合SVM與改良式CBC分群演算法 Hsieh,Kong-Ling 謝岡陵 碩士 中華大學 資訊管理學系 94 In the study, a new hybrid incremental clustering method is proposed in combination with SVM and enhanced CBC algorithm. SVM classifies the incoming document to see if it belongs to the existing classes. Then enhanced CBC algorithm is used to cluster the unclassified documents. In the algorithm, SVM can significantly reduce the amount of calculation and the noise of clustering. Enhanced CBC algorithm can effectively control the number of clusters, raise performance and the number of classes grows gradually based on the structure of current classes without clustering all of documents again. In experimental results, the hybrid incremental clustering outperforms the enhanced CBC clustering and other algorithms. Also, enhanced CBC clustering outperforms original CBC. Chiu,Deng-Yiv 邱登裕 2006 學位論文 ; thesis 58 zh-TW
collection NDLTD
language zh-TW
format Others
sources NDLTD
description 碩士 === 中華大學 === 資訊管理學系 === 94 === In the study, a new hybrid incremental clustering method is proposed in combination with SVM and enhanced CBC algorithm. SVM classifies the incoming document to see if it belongs to the existing classes. Then enhanced CBC algorithm is used to cluster the unclassified documents. In the algorithm, SVM can significantly reduce the amount of calculation and the noise of clustering. Enhanced CBC algorithm can effectively control the number of clusters, raise performance and the number of classes grows gradually based on the structure of current classes without clustering all of documents again. In experimental results, the hybrid incremental clustering outperforms the enhanced CBC clustering and other algorithms. Also, enhanced CBC clustering outperforms original CBC.
author2 Chiu,Deng-Yiv
author_facet Chiu,Deng-Yiv
Hsieh,Kong-Ling
謝岡陵
author Hsieh,Kong-Ling
謝岡陵
spellingShingle Hsieh,Kong-Ling
謝岡陵
A hybrid incremental clustering method—combining SVM and enhanced CBC algorithm
author_sort Hsieh,Kong-Ling
title A hybrid incremental clustering method—combining SVM and enhanced CBC algorithm
title_short A hybrid incremental clustering method—combining SVM and enhanced CBC algorithm
title_full A hybrid incremental clustering method—combining SVM and enhanced CBC algorithm
title_fullStr A hybrid incremental clustering method—combining SVM and enhanced CBC algorithm
title_full_unstemmed A hybrid incremental clustering method—combining SVM and enhanced CBC algorithm
title_sort hybrid incremental clustering method—combining svm and enhanced cbc algorithm
publishDate 2006
url http://ndltd.ncl.edu.tw/handle/82273717239496436297
work_keys_str_mv AT hsiehkongling ahybridincrementalclusteringmethodcombiningsvmandenhancedcbcalgorithm
AT xiègānglíng ahybridincrementalclusteringmethodcombiningsvmandenhancedcbcalgorithm
AT hsiehkongling jiànjìnshìfēnqúnfāngfǎjiéhésvmyǔgǎiliángshìcbcfēnqúnyǎnsuànfǎ
AT xiègānglíng jiànjìnshìfēnqúnfāngfǎjiéhésvmyǔgǎiliángshìcbcfēnqúnyǎnsuànfǎ
AT hsiehkongling hybridincrementalclusteringmethodcombiningsvmandenhancedcbcalgorithm
AT xiègānglíng hybridincrementalclusteringmethodcombiningsvmandenhancedcbcalgorithm
_version_ 1716832122334871552