ZERO − DIMENSIONAL GORENSTEIN IDEALS

碩士 === 國立臺灣大學 === 數學研究所 === 93 === In this paper, we solve two problem of Gorenstein Ideals :In section 2, we find the generators of the ideal ((x_{1}^{n},x_{2}^{n},...,x_{s}^{n},y_{1}^{n},...,y_{t}^{n}): x_{1}^{alpha_{1}}x_{2}^{alpha_{2}}cdots x_{s}^{alpha_{s}} y_{1}^{ eta_{1}}y_{2}^{ eta_{2}}... y...

Full description

Bibliographic Details
Main Authors: Ching-An Chen, 陳清安
Other Authors: 朱樺
Format: Others
Language:en_US
Published: 2005
Online Access:http://ndltd.ncl.edu.tw/handle/55395710717942506747
Description
Summary:碩士 === 國立臺灣大學 === 數學研究所 === 93 === In this paper, we solve two problem of Gorenstein Ideals :In section 2, we find the generators of the ideal ((x_{1}^{n},x_{2}^{n},...,x_{s}^{n},y_{1}^{n},...,y_{t}^{n}): x_{1}^{alpha_{1}}x_{2}^{alpha_{2}}cdots x_{s}^{alpha_{s}} y_{1}^{ eta_{1}}y_{2}^{ eta_{2}}... y_{t}^{ eta_{t}}(x_{1}^{gamma_{1}} x_{2}^{gamma_{2}}... x_{s}^{gamma_{s}}-y_{1}^{delta_{1}} y_{2}^{delta_{2}}... y_{t}^{delta_{t}})). In section 3, we find the number of generators of ((x^{n},y^{n},z^{n}):x+y+z). In the proof of section 3, we need to show that a matrix on binomial coefficients is nonsigular. We solve this problem in section 4.