Summary: | 碩士 === 國立中山大學 === 生物科學系研究所 === 93 === b-catenin plays a dual role as a structural component of adherens junctions and as a transcriptional coactivator through its interactions with E-cadherin and TCF/LEF transcription factors, respectively. Normally, free b-catenin in cytoplasma is regulated by proteosome-dependent degradation system. In malignant tumor cell , deregulation of b-catenin degradation results in its aberrant accumulation, and leading to cancer.
The goals of this study were to explore the reason of aberrant b-catenin accumulation in cervical carcinoma and evaluate the correlation between b-catenin、E-cadherin and p53 in different FIGO stage.
Seventy paraffin embedded specimen with different FIGO stage were included in this study. Immunohistochemical staining was performed using anti-b-catenin polyclonal antibody and anti-p53 polyclonal antibody respectively and direct sequencing methods to analyze the mutation of CTNNB1 exon 13. The results showed 58 cases (82.8%) displayed cytoplasmic/nuclear b-catenin and no mutations in exon 13 of b-catenin gene, whereas no significant correlation between b-catenin expression level and tumor metastasis. However, b-catenin expression intensity had significant correlation with tumor size (p=0.008) and inversely correlated with E-cadherin (p=0.027) in different FIGO stage. The other way, the p53 staining intensity was significant correlated with b-catenin expression intensity (p=0.013) . Therefore, we suggest that mutations of CTNNB1 exon 13 may not be a reason for aberrant b-catenin accumulation in cervical carcinoma and aberrant p53 may play an important factor in accumulation of b-catenin.
|